Main

# GEKKO Python example for steady state optimization (imode=3)

from gekko import GEKKO

m = GEKKO()

m.option.IMODE = 3
~~!! Modes of Operation~~

%blue%A%red%P%black%Monitor is designed to enable multiple modes of operation with one model. This model is defined in terms of differential and algebraic equations. The program handles all of the configuration and interfacing to the solvers.
~~****~~ Simulation

~~****~~ Estimation

~~****~~ Optimization and Control

~~Attach:modes.png~~
~~The core of all modes is the non-linear model. Each mode retrieves information from the non-linear model to give predictions or provides information to improve the model accuracy through parameter fitting.~~

Attach:modes2.png
~~%width=300px% | ~~Attach:modes.png

## Modes

## Main.Modes History

Hide minor edits - Show changes to output

Changed line 11 from:

# GEKKO Python example for steady state optimization (imode=3)

to:

# [[https://gekko.readthedocs.io/en/latest/global.html|GEKKO Python]] example for steady state optimization (imode=3)

Changed line 14 from:

m.~~option~~.IMODE = 3

to:

m.options.IMODE = 3

Changed line 5 from:

% MATLAB example for dynamic simulation (imode=7)

to:

% APM MATLAB example for dynamic simulation (imode=7)

Changed line 8 from:

# Python example for model predictive control (imode=6)

to:

# APM Python example for model predictive control (imode=6)

Added lines 10-14:

# GEKKO Python example for steady state optimization (imode=3)

from gekko import GEKKO

m = GEKKO()

m.option.IMODE = 3

Changed lines 1-4 from:

%blue%A%red%P%black%Monitor is designed to enable multiple modes of operation with one model. This model is defined in terms of differential and algebraic equations. The program handles all of the configuration and interfacing to the solvers. The simulation mode is changed with the ~~nlc~~.~~imode~~ option.

~~nlc.imode~~ = {1-9}

to:

%blue%A%red%P%black%Monitor is designed to enable multiple modes of operation with one model. This model is defined in terms of differential and algebraic equations. The program handles all of the configuration and interfacing to the solvers. The simulation mode is changed with the APM.IMODE option.

[[Main/OptionApmImode|IMODE]] = {1-9}

[[Main/OptionApmImode|IMODE]] = {1-9}

Changed lines 6-7 from:

apm_option(server,app,'~~nlc~~.imode',7);

to:

apm_option(server,app,'apm.imode',7);

Changed line 9 from:

apm_option(server,app,'~~nlc~~.imode',6)

to:

apm_option(server,app,'apm.imode',6)

Changed line 9 from:

apm_option(server,app,'nlc.imode',6)~~;~~

to:

apm_option(server,app,'nlc.imode',6)

Changed lines 22-23 from:

# Sequential dynamic estimation (SQE) ~~- [[Main/ProductRoadmap |Newly Released on 22 Nov 2014]]~~

# Sequential dynamic optimization(SQO)~~ - [[Main/ProductRoadmap |Newly Released on 22 Nov 2014]]~~

# Sequential dynamic optimization

to:

# Sequential dynamic estimation (SQE)

# Sequential dynamic optimization (SQO)

# Sequential dynamic optimization (SQO)

Changed lines 1-3 from:

to:

%blue%A%red%P%black%Monitor is designed to enable multiple modes of operation with one model. This model is defined in terms of differential and algebraic equations. The program handles all of the configuration and interfacing to the solvers. The simulation mode is changed with the nlc.imode option.

nlc.imode = {1-9}

% MATLAB example for dynamic simulation (imode=7)

apm_option(server,app,'nlc.imode',7);

# Python example for model predictive control (imode=6)

apm_option(server,app,'nlc.imode',6);

nlc.imode = {1-9}

% MATLAB example for dynamic simulation (imode=7)

apm_option(server,app,'nlc.imode',7);

# Python example for model predictive control (imode=6)

apm_option(server,app,'nlc.imode',6);

Changed lines 16-17 from:

# Sequential dynamic estimation (SQE) - ~~new 22 Nov 2014~~

# Sequential dynamic optimization (SQO) - new 22 Nov 2014

# Sequential dynamic optimization (SQO) - new 22 Nov 2014

to:

# Sequential dynamic estimation (SQE) - [[Main/ProductRoadmap |Newly Released on 22 Nov 2014]]

# Sequential dynamic optimization (SQO) - [[Main/ProductRoadmap |Newly Released on 22 Nov 2014]]

# Sequential dynamic optimization (SQO) - [[Main/ProductRoadmap |Newly Released on 22 Nov 2014]]

Changed lines 16-17 from:

# Sequential dynamic estimation (SQE) - ~~under development~~

# Sequential dynamic optimization (SQO) - under development

# Sequential dynamic optimization (SQO) - under development

to:

# Sequential dynamic estimation (SQE) - new 22 Nov 2014

# Sequential dynamic optimization (SQO) - new 22 Nov 2014

# Sequential dynamic optimization (SQO) - new 22 Nov 2014

Changed lines 14-16 from:

# Nonlinear control (CTL)

~~Modes 1-3 are steady state modes with all derivatives set equal to zero. Modes 4~~-~~6 are dynamic modes where the differential equations define how the variables change with time~~. ~~Each mode~~ has a steady state and dynamic option.

to:

# Nonlinear control / dynamic optimization (CTL)

# Sequential dynamic simulation (SQS)

# Sequential dynamic estimation (SQE) - under development

# Sequential dynamic optimization (SQO) - under development

Modes 1-3 are steady state modes with all derivatives set equal to zero. Modes 4-6 are dynamic modes where the differential equations define how the variables change with time. Modes 7-9 are the same as 4-6 except the solution is performed with a sequential versus a simultaneous approach. Each mode for simulation, estimation, and optimization has a steady state and dynamic option.

# Sequential dynamic simulation (SQS)

# Sequential dynamic estimation (SQE) - under development

# Sequential dynamic optimization (SQO) - under development

Modes 1-3 are steady state modes with all derivatives set equal to zero. Modes 4-6 are dynamic modes where the differential equations define how the variables change with time. Modes 7-9 are the same as 4-6 except the solution is performed with a sequential versus a simultaneous approach. Each mode for simulation, estimation, and optimization has a steady state and dynamic option.

Changed line 26 from:

Modes 2 and 5 are estimation modes. Mode 2 is for steady-state estimation and mode 5 is for dynamic estimation. Mode 2 is also known as the data reconciliation step in a real-time optimization solution. Mode 5 is also known as moving horizon estimation. Mode 5 is equivalent to the Kalman filter when the model is linear, the disturbance noise is white, and the probability ~~distribution~~ function is assumed Gaussian.

to:

Modes 2 and 5 are estimation modes. Mode 2 is for steady-state estimation and mode 5 is for dynamic estimation. Mode 2 is also known as the data reconciliation step in a real-time optimization solution. Mode 5 is also known as moving horizon estimation. Mode 5 is equivalent to the Kalman filter when the model is linear, the disturbance noise is white, and the probability density function is assumed Gaussian.

Changed line 14 from:

# Nonlinear control (~~NLC~~)

to:

# Nonlinear control (CTL)

Changed line 13 from:

# Moving horizon estimation (~~MHE~~)

to:

# Moving horizon estimation (EST)

Changed line 30 from:

Modes 3 and 6 are optimization and control modes. Mode 3 performs steady-state optimization. Combined with mode 2, this constitutes a real-time optimization (RTO) solution. Mode 6 has a similar objective as mode 3 but is solved with a time-varying model. For linear models, this is often referred to as ''control''. For nonlinear models, this is~~ often~~ referred to as ''nonlinear control'' (NLC) or ''nonlinear model predictive control'' (NMPC).

to:

Modes 3 and 6 are optimization and control modes. Mode 3 performs steady-state optimization. Combined with mode 2, this constitutes a real-time optimization (RTO) solution. Mode 6 has a similar objective as mode 3 but is solved with a time-varying model. For linear models, this is often referred to as ''control''. For nonlinear models, this is referred to as ''nonlinear control'' (NLC) or ''nonlinear model predictive control'' (NMPC).

Changed lines 18-19 from:

to:

Attach:modes.png

!!! Simulation

!!! Simulation

Changed lines 24-25 from:

to:

!!! Estimation

Changed lines 28-29 from:

to:

!!! Optimization and Control

Deleted line 31:

Changed lines 7-8 from:

to:

The core of all modes is the non-linear model. Each mode interacts with the nonlinear model to receive or provide information. There are 6 modes of operation for the %blue%A%red%P%black%Monitor software.

# Steady-state simulation (SS)

# Model parameter update (MPU)

# Real-time optimization (RTO)

# Dynamic simulation (SIM)

# Moving horizon estimation (MHE)

# Nonlinear control (NLC)

Modes 1-3 are steady state modes with all derivatives set equal to zero. Modes 4-6 are dynamic modes where the differential equations define how the variables change with time. Each mode has a steady state and dynamic option.

**** Simulation

Modes 1 and 4 are simulation-only modes. These simulation modes are for steady-state and dynamic investigation of the model. There is no optimization with the simulation modes. The model serves as a virtual process or simulator.

**** Estimation

Modes 2 and 5 are estimation modes. Mode 2 is for steady-state estimation and mode 5 is for dynamic estimation. Mode 2 is also known as the data reconciliation step in a real-time optimization solution. Mode 5 is also known as moving horizon estimation. Mode 5 is equivalent to the Kalman filter when the model is linear, the disturbance noise is white, and the probability distribution function is assumed Gaussian.

**** Optimization and Control

Modes 3 and 6 are optimization and control modes. Mode 3 performs steady-state optimization. Combined with mode 2, this constitutes a real-time optimization (RTO) solution. Mode 6 has a similar objective as mode 3 but is solved with a time-varying model. For linear models, this is often referred to as ''control''. For nonlinear models, this is often referred to as ''nonlinear control'' (NLC) or ''nonlinear model predictive control'' (NMPC).

# Steady-state simulation (SS)

# Model parameter update (MPU)

# Real-time optimization (RTO)

# Dynamic simulation (SIM)

# Moving horizon estimation (MHE)

# Nonlinear control (NLC)

Modes 1-3 are steady state modes with all derivatives set equal to zero. Modes 4-6 are dynamic modes where the differential equations define how the variables change with time. Each mode has a steady state and dynamic option.

**** Simulation

Modes 1 and 4 are simulation-only modes. These simulation modes are for steady-state and dynamic investigation of the model. There is no optimization with the simulation modes. The model serves as a virtual process or simulator.

**** Estimation

Modes 2 and 5 are estimation modes. Mode 2 is for steady-state estimation and mode 5 is for dynamic estimation. Mode 2 is also known as the data reconciliation step in a real-time optimization solution. Mode 5 is also known as moving horizon estimation. Mode 5 is equivalent to the Kalman filter when the model is linear, the disturbance noise is white, and the probability distribution function is assumed Gaussian.

**** Optimization and Control

Modes 3 and 6 are optimization and control modes. Mode 3 performs steady-state optimization. Combined with mode 2, this constitutes a real-time optimization (RTO) solution. Mode 6 has a similar objective as mode 3 but is solved with a time-varying model. For linear models, this is often referred to as ''control''. For nonlinear models, this is often referred to as ''nonlinear control'' (NLC) or ''nonlinear model predictive control'' (NMPC).

Added lines 5-8:

!!! Non-linear Model Core

The core of all modes is the non-linear model. Each mode retrieves information from the non-linear model to give predictions or provides information to improve the model accuracy through parameter fitting.

The core of all modes is the non-linear model. Each mode retrieves information from the non-linear model to give predictions or provides information to improve the model accuracy through parameter fitting.

Deleted lines 9-10:

Attach:modes2.png

Changed line 5 from:

to:

Attach:modes.png