Optimize with GPR Uncertainty
Main.GPROptimization History
Hide minor edits - Show changes to output
Changed line 5 from:
%width=15px%Attach:github.png [[https://github.com/BYU-PRISM/GEKKO/blob/master/examples/Energy_Dispatch.ipynb|GitHub]] | %width=20px%Attach:colab.png [[https://colab.research.google.com/github/BYU-PRISM/GEKKO/blob/master/examples/Energy_Dispatch.ipynb|Google Colab]]
to:
%width=15px%Attach:github.png [[https://github.com/BYU-PRISM/GEKKO/blob/master/examples/Gekko_GPR_Optimization.ipynb|GitHub]] | %width=20px%Attach:colab.png [[https://colab.research.google.com/github/BYU-PRISM/GEKKO/blob/master/examples/Gekko_GPR_Optimization.ipynb|Google Colab]]
Changed line 5 from:
%width=15px%Attach:github.png [[https://github.com/BYU-PRISM/GEKKO/blob/master/examples/Gekko_GPR_Optimization.ipynb|GitHub]] | %width=20px%Attach:colab.png [[https://colab.research.google.com/github/BYU-PRISM/GEKKO/blob/master/examples/Gekko_GPR_Optimization.ipynb|Google Colab]]
to:
%width=15px%Attach:github.png [[https://github.com/BYU-PRISM/GEKKO/blob/master/examples/Energy_Dispatch.ipynb|GitHub]] | %width=20px%Attach:colab.png [[https://colab.research.google.com/github/BYU-PRISM/GEKKO/blob/master/examples/Energy_Dispatch.ipynb|Google Colab]]
Changed line 1 from:
(:title Optimization Under Uncertainty:)
to:
(:title Optimize with GPR Uncertainty:)
Changed lines 7-8 from:
to:
(:html:)
<iframe width="560" height="315" src="https://www.youtube.com/embed/s4saLHPL14o" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
(:htmlend:)
<iframe width="560" height="315" src="https://www.youtube.com/embed/s4saLHPL14o" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
(:htmlend:)
Added lines 176-177:
%width=550px%Attach:optimize_uncertainty.png
Added lines 172-173:
Thanks to [[https://www.linkedin.com/in/lagrande-gunnell-715a2b194/|LaGrande Gunnell]] for adding the [[https://gekko.readthedocs.io/en/latest/ml.html|ML library]] to Gekko and for the example problem.
Added lines 60-61:
%width=550px%Attach:gpr_data.png
Deleted line 83:
Deleted lines 85-86:
Added lines 99-100:
%width=550px%Attach:gpr_model.png
Changed lines 15-24 from:
# Generate the data for the GPR model using the source function.
# Define the kernel and initialize the Gaussian Process Regressor.
# Fit the GPR model to the generated data.
# Set up the Gekko optimization model, define the variable and the objective function, and solve the optimization problem
to:
'''Import Libraries:''' Import the necessary libraries including NumPy, Matplotlib, Gekko, and Scikit-learn's Gaussian Process Regressor and kernels. Install Gekko if it isn't already installed.
Changed lines 20-24 from:
from
from sklearn.
# Defining the source function
to:
import pandas as pd
import sklearn.gaussian_process as gp
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
try:
from gekko.ML import Gekko_GPR
from gekko import GEKKO
except:
!pip install gekko
from gekko.ML import Gekko_GPR
from gekko import GEKKO
(:sourceend:)
'''Generate Data:''' Define a function to generate data with noise and visualizes this data along with the true function.
(:source lang=python:)
import sklearn.gaussian_process as gp
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
try:
from gekko.ML import Gekko_GPR
from gekko import GEKKO
except:
!pip install gekko
from gekko.ML import Gekko_GPR
from gekko import GEKKO
(:sourceend:)
'''Generate Data:''' Define a function to generate data with noise and visualizes this data along with the true function.
(:source lang=python:)
Changed lines 38-59 from:
return np.sin(10 * x) * x + np.random.normal(0, 0.1, x.shape)
# Generating the data
np.random.seed(0)
xl = np.linspace(0, 1, 100)
y_true = f(xl)
y_measured = f(xl)
# Define kernel and Gaussian Process Regressor
kernel = C(1.0, (1e-3, 1e3)) * RBF(0.1, (1e-2, 1e2))
gpr = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=10)
# Fit to data
gpr.fit(xl[:, np.newaxis], y_measured)
# Optimization with Gekko
m = GEKKO(remote=False)
m.x = m.Var(value=0.5, lb=0, ub=1)
m.obj(f(m.x))
m.solve(disp=False)
opt_val = m.x.value
# Generating the data
np.
# Define kernel and Gaussian Process Regressor
kernel = C(1
# Fit to data
gpr
# Optimization with Gekko
m = GEKKO(remote=False
m
opt_val = m
to:
return np.cos(2*np.pi*x)
#represent noise from a data sample
N = 150
p1 = np.linspace(0.00,0.3,15)
p2 = np.linspace(0.32,0.4,40)
p3 = np.linspace(0.42,1.2,45)
xl = np.concatenate((p1,p2,p3))
np.random.seed(14)
n1 = np.random.normal(0,0.3,15)
n2 = np.random.normal(0,0.1,40)
n3 = np.random.normal(0,0.3,45)
noise = np.concatenate((n1,n2,n3))
y_measured = f(xl) + noise
plt.figure(figsize=(6,3.5))
plt.plot(xl,f(xl),label='source function')
plt.plot(xl,y_measured,'.',label='measured points')
plt.legend()
plt.show()
#represent noise from a data sample
N = 150
p1 = np.linspace(0.00,0.3,15)
p2 = np.linspace(0.32,0.4,40)
p3 = np.linspace(0.42,1.2,45)
xl = np.concatenate((p1,p2,p3))
np.random.seed(14)
n1 = np.random.normal(0,0.3,15)
n2 = np.random.normal(0,0.1,40)
n3 = np.random.normal(0,0.3,45)
noise = np.concatenate((n1,n2,n3))
y_measured = f(xl) + noise
plt.figure(figsize=(6,3.5))
plt.plot(xl,f(xl),label='source function')
plt.plot(xl,y_measured,'.',label='measured points')
plt.legend()
plt.show()
Changed lines 60-66 from:
# Define the variable and the objective function based on the GPR model's predicted standard deviation.
# Solve the optimization problem
to:
'''Data Preparation:''' Data is split into training and testing sets using train_test_split from scikit-learn.
Changed lines 63-70 from:
m2 = GEKKO
m2
model_pred, model_std
m2
m2.solve(disp=False)
opt_val2 = m2.x.value
to:
data = pd.DataFrame(np.array([xl,y_measured]).T,columns=['x','y'])
features = ['x']
label = ['y']
train,test = train_test_split(data,test_size=0.2,shuffle=True)
features = ['x']
label = ['y']
train,test = train_test_split(data,test_size=0.2,shuffle=True)
Changed lines 69-75 from:
# Define
# Solve the optimization problem
to:
'''GPR Model Training:''' A Gaussian Process Regressor (GPR) is created and trained on the training data. The performance of the model is evaluated using the R-squared metric on the test data.
Changed lines 72-78 from:
m3
m3.x = m3.Var(value=0.5, lb=0, ub=1)
m3.Obj(f(m3.x) + model_std[int(m3.x.value * 100)])
m3.solve(disp=False)
opt_val3 = m3
to:
k = gp.kernels.RBF() * gp.kernels.ConstantKernel() + gp.kernels.WhiteKernel()
gpr = gp.GaussianProcessRegressor(kernel=k,\
n_restarts_optimizer=10,\
alpha=0.1,\
normalize_y=True)
gpr.fit(train[features],train[label])
r2 = gpr.score(test[features],test[label])
print('gpr r2:',r2)
gpr = gp.GaussianProcessRegressor(kernel=k,\
n_restarts_optimizer=10,\
alpha=0.1,\
normalize_y=True)
gpr.fit(train[features],train[label])
r2 = gpr.score(test[features],test[label])
print('gpr r2:',r2)
Changed lines 82-89 from:
# Add confidence intervals for the GPR model predictions
# Display the plot.
to:
'''Model Visualization:''' The trained GPR model predictions and confidence intervals are plotted against the true function and noisy measurements.
%width=550px%Attach:gpr_model.png
Changed lines 88-103 from:
plt
plt
plt
plt.plot(xl, model_pred, '
plt.fill_between(xl
plt.
plt.scatter([opt_val2[0]], [opt_val2[1]], label='GPR uncertainty minimized', color='black', marker='o', s=100, zorder=3)
plt.scatter([opt_val3[0]], [opt_val3[1]], label='Combined optimization', color='blue', marker='^', s=100, zorder=3)
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=10, frameon=False)
plt.subplot(2,1,2)
plt.plot(xl, model_std, 'k--', label='GPR uncertainty')
plt.scatter([opt_val2[0]], [opt_val2[2]], label='GPR uncertainty minimized', color='black', marker='o', s=100, zorder=3)
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=10, frameon=False
to:
prediction_data = pd.DataFrame(np.array([xl]).T, columns=features)
model_pred, model_std = gpr.predict(prediction_data, return_std=True)
t = 1.96 #2 sided 90% Confidence interval z-infinity score
plt.plot(xl,f(xl),label='source function')
plt.plot(xl,y_measured,'.',label='measured points')
plt.plot(xl,model_pred,'--',label='trained model',color='green')
plt.fill_between(xl,model_pred-t*model_std,model_pred+t*model_std,alpha=0.3,color='green')
plt.legend()
model_pred, model_std = gpr.predict(prediction_data, return_std=True)
t = 1.96 #2 sided 90% Confidence interval z-infinity score
plt.plot(xl,f(xl),label='source function')
plt.plot(xl,y_measured,'.',label='measured points')
plt.plot(xl,model_pred,'--',label='trained model',color='green')
plt.fill_between(xl,model_pred-t*model_std,model_pred+t*model_std,alpha=0.3,color='green')
plt.legend()
Added lines 100-170:
'''Optimization with Gekko:''' The Gekko package is used to perform optimization. A variable is created within Gekko and the trained GPR model is used to predict the output and its uncertainty for this variable. Gekko then optimizes this variable to minimize the objective, which in this case is either the predicted value or the uncertainty of the prediction.
(:source lang=python:)
m = GEKKO(remote=False)
x = m.Var(0,lb=0,ub=1)
y,y_std = Gekko_GPR(gpr,m).predict(x,return_std=True)
m.Minimize(y)
m.solve(disp=False)
print('solution:',y.value[0],'std:',y_std.value[0])
print('x:',x.value[0])
print('Gekko Solvetime:',m.options.SOLVETIME,'s')
opt_val = [x.value[0],y.value[0]]
(:sourceend:)
'''Uncertainty Optimization:''' uncertainty is minimized.
(:source lang=python:)
m = GEKKO(remote=False)
x = m.Var(0,lb=0,ub=1)
y,y_std = Gekko_GPR(gpr,m).predict(x,return_std=True)
m.Minimize(y_std)
m.solve(disp=False)
print('solution:',y.value[0],'std:',y_std.value[0])
print('x:',x.value[0])
print('Gekko Solvetime:',m.options.SOLVETIME,'s')
opt_val2 = [x.value[0],y.value[0],y_std.value[0]]
(:sourceend:)
'''Multi-Objective Uncertainty Optimization:''' uncertainty and expected values are minimized as a weighted sum.
(:source lang=python:)
m = GEKKO(remote=False)
x = m.Var(0,lb=0,ub=1)
y,y_std = Gekko_GPR(gpr,m).predict(x,return_std=True)
m.Minimize(y+50*y_std)
m.solve(disp=False)
print('solution:',y.value[0],'std:',y_std.value[0])
print('x:',x.value[0])
print('Gekko Solvetime:',m.options.SOLVETIME,'s')
opt_val3 = [x.value[0],y.value[0],y_std.value[0]]
(:sourceend:)
'''Results Visualization:''' Finally, the optimization results are visualized, showing the points of optimized predicted values and uncertainties.
(:source lang=python:)
model_pred, model_std = gpr.predict(prediction_data, return_std=True)
t = 1.96 #2 sided 90% Confidence interval z-infinity score
plt.figure(figsize=(8,4))
plt.subplot(2,1,1)
plt.plot(xl,f(xl),'b-',label='Source function')
plt.plot(xl,y_measured,'.',label='Measured points')
plt.plot(xl,model_pred,'--',label='GPR model',color='green')
plt.fill_between(xl,model_pred-t*model_std,model_pred+t*model_std,alpha=0.3,color='green')
plt.scatter([opt_val[0]],[opt_val[1]],label='GPR model minimized',color='red',marker='s',s=100,zorder=3)
plt.scatter([opt_val2[0]],[opt_val2[1]],label='GPR uncertainty minimized',color='black',marker='o',s=100,zorder=3)
plt.scatter([opt_val3[0]],[opt_val3[1]],label='Combined optimization',color='blue',marker='^',s=100,zorder=3)
plt.legend(loc='center left',bbox_to_anchor=(1, 0.5),fontsize=10,frameon=False)
plt.subplot(2,1,2)
plt.plot(xl,model_std,'k--',label='GPR uncertainty')
plt.scatter([opt_val2[0]],[opt_val2[2]],label='GPR uncertainty minimized',color='black',marker='o',s=100,zorder=3)
plt.legend(loc='center left',bbox_to_anchor=(1, 0.5),fontsize=10,frameon=False)
plt.tight_layout()
plt.show()
(:sourceend:)
%width=550px%Attach:gpr_optimized.png
Added lines 4-5:
%width=15px%Attach:github.png [[https://github.com/BYU-PRISM/GEKKO/blob/master/examples/Gekko_GPR_Optimization.ipynb|GitHub]] | %width=20px%Attach:colab.png [[https://colab.research.google.com/github/BYU-PRISM/GEKKO/blob/master/examples/Gekko_GPR_Optimization.ipynb|Google Colab]]
Changed lines 9-10 from:
to:
'''Optimization Under Uncertainty'''
Added lines 13-22:
----
'''Explanation:'''
# Import the necessary libraries including NumPy, Matplotlib, Gekko, and Scikit-learn's Gaussian Process Regressor and kernels.
# Define the source function ''f(x)'' which includes some noise.
# Generate the data for the GPR model using the source function.
# Define the kernel and initialize the Gaussian Process Regressor.
# Fit the GPR model to the generated data.
# Set up the Gekko optimization model, define the variable and the objective function, and solve the optimization problem.
'''Explanation:'''
# Import the necessary libraries including NumPy, Matplotlib, Gekko, and Scikit-learn's Gaussian Process Regressor and kernels.
# Define the source function ''f(x)'' which includes some noise.
# Generate the data for the GPR model using the source function.
# Define the kernel and initialize the Gaussian Process Regressor.
# Fit the GPR model to the generated data.
# Set up the Gekko optimization model, define the variable and the objective function, and solve the optimization problem.
Added lines 56-57:
----
Changed lines 59-65 from:
2. Define the source function
4. Define the kernel and initialize the Gaussian Process Regressor.
5. Fit the GPR model to the generated data.
6. Set up the Gekko optimization model, define the variable and the objective function, and solve
to:
# Initialize another Gekko optimization model for minimizing the uncertainty.
# Define the variable and the objective function based on the GPR model's predicted standard deviation.
# Solve the optimization problem.
# Define the variable and the objective function based on the GPR model's predicted standard deviation.
# Solve the optimization problem.
Added lines 74-75:
----
Changed lines 77-80 from:
2. Define
to:
# Set up a combined optimization problem that minimizes both the GPR prediction and the uncertainty.
# Define the variable and the objective function combining both the prediction and uncertainty.
# Solve the optimization problem.
# Define the variable and the objective function combining both the prediction and uncertainty.
# Solve the optimization problem.
Added lines 91-92:
----
Changed lines 94-97 from:
3. Solve
to:
# Create a plot to visualize the source function, measured points, and GPR model.
# Add confidence intervals for the GPR model predictions.
# Highlight the optimized values for the different optimization problems.
# Display the plot.
# Add confidence intervals for the GPR model predictions.
# Highlight the optimized values for the different optimization problems.
# Display the plot.
Deleted lines 115-116:
plt.savefig('combined.png', dpi=300)
Deleted lines 117-122:
'''Explanation:'''
1. Create a plot to visualize the source function, measured points, and GPR model.
2. Add confidence intervals for the GPR model predictions.
3. Highlight the optimized values for the different optimization problems.
4. Display the plot.
Added lines 1-111:
(:title Optimization Under Uncertainty:)
(:keywords gpr, optimization, gekko, engineering, course:)
(:description Optimization of Gaussian Process Regression Model using Gekko:)
%width=550px%Attach:optimize_uncertainty.png
Gaussian Process Regression (GPR) is a probabilistic model and non-parametric method that assumes the function is drawn from a Gaussian process. This allows the model to make predictions with well-defined uncertainty, useful for tasks such as uncertainty-aware decision-making. A more complete mathematical description is provided in the Machine Learning for Engineers course on the [[https://apmonitor.com/pds/index.php/Main/GaussianProcessRegression|Gaussian Process Regression]] learning page.
!! Gekko Optimization of GPR Model
The following sections contain the code blocks for Gekko Optimization of a GPR model that minimizes the GPR prediction and uncertainty.
(:source lang=python:)
import numpy as np
import matplotlib.pyplot as plt
from gekko import GEKKO
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C
# Defining the source function
def f(x):
return np.sin(10 * x) * x + np.random.normal(0, 0.1, x.shape)
# Generating the data
np.random.seed(0)
xl = np.linspace(0, 1, 100)
y_true = f(xl)
y_measured = f(xl)
# Define kernel and Gaussian Process Regressor
kernel = C(1.0, (1e-3, 1e3)) * RBF(0.1, (1e-2, 1e2))
gpr = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=10)
# Fit to data
gpr.fit(xl[:, np.newaxis], y_measured)
# Optimization with Gekko
m = GEKKO(remote=False)
m.x = m.Var(value=0.5, lb=0, ub=1)
m.obj(f(m.x))
m.solve(disp=False)
opt_val = m.x.value
(:sourceend:)
'''Explanation:'''
1. Import the necessary libraries including NumPy, Matplotlib, Gekko, and Scikit-learn's Gaussian Process Regressor and kernels.
2. Define the source function ''f(x)'' which includes some noise.
3. Generate the data for the GPR model using the source function.
4. Define the kernel and initialize the Gaussian Process Regressor.
5. Fit the GPR model to the generated data.
6. Set up the Gekko optimization model, define the variable and the objective function, and solve the optimization problem.
(:source lang=python:)
# Define the Gekko optimization model for minimizing the uncertainty
m2 = GEKKO(remote=False)
m2.x = m2.Var(value=0.5, lb=0, ub=1)
model_pred, model_std = gpr.predict(xl[:, np.newaxis], return_std=True)
m2.obj(model_std[int(m2.x.value * 100)])
m2.solve(disp=False)
opt_val2 = m2.x.value
(:sourceend:)
'''Explanation:'''
1. Initialize another Gekko optimization model for minimizing the uncertainty.
2. Define the variable and the objective function based on the GPR model's predicted standard deviation.
3. Solve the optimization problem.
(:source lang=python:)
# Combined optimization for prediction and uncertainty
m3 = GEKKO(remote=False)
m3.x = m3.Var(value=0.5, lb=0, ub=1)
m3.Obj(f(m3.x) + model_std[int(m3.x.value * 100)])
m3.solve(disp=False)
opt_val3 = m3.x.value
(:sourceend:)
'''Explanation:'''
1. Set up a combined optimization problem that minimizes both the GPR prediction and the uncertainty.
2. Define the variable and the objective function combining both the prediction and uncertainty.
3. Solve the optimization problem.
(:source lang=python:)
# Plotting results
plt.figure(figsize=(8,8))
plt.subplot(2,1,1)
plt.plot(xl, f(xl), 'b-', label='Source function')
plt.plot(xl, y_measured, '.', label='Measured points')
plt.plot(xl, model_pred, '--', label='GPR model', color='green')
plt.fill_between(xl, model_pred - 1.96 * model_std, model_pred + 1.96 * model_std, alpha=0.3, color='green')
plt.scatter([opt_val[0]], [opt_val[1]], label='GPR model minimized', color='red', marker='s', s=100, zorder=3)
plt.scatter([opt_val2[0]], [opt_val2[1]], label='GPR uncertainty minimized', color='black', marker='o', s=100, zorder=3)
plt.scatter([opt_val3[0]], [opt_val3[1]], label='Combined optimization', color='blue', marker='^', s=100, zorder=3)
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=10, frameon=False)
plt.subplot(2,1,2)
plt.plot(xl, model_std, 'k--', label='GPR uncertainty')
plt.scatter([opt_val2[0]], [opt_val2[2]], label='GPR uncertainty minimized', color='black', marker='o', s=100, zorder=3)
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=10, frameon=False)
plt.tight_layout()
plt.savefig('combined.png', dpi=300)
plt.show()
(:sourceend:)
'''Explanation:'''
1. Create a plot to visualize the source function, measured points, and GPR model.
2. Add confidence intervals for the GPR model predictions.
3. Highlight the optimized values for the different optimization problems.
4. Display the plot.
(:keywords gpr, optimization, gekko, engineering, course:)
(:description Optimization of Gaussian Process Regression Model using Gekko:)
%width=550px%Attach:optimize_uncertainty.png
Gaussian Process Regression (GPR) is a probabilistic model and non-parametric method that assumes the function is drawn from a Gaussian process. This allows the model to make predictions with well-defined uncertainty, useful for tasks such as uncertainty-aware decision-making. A more complete mathematical description is provided in the Machine Learning for Engineers course on the [[https://apmonitor.com/pds/index.php/Main/GaussianProcessRegression|Gaussian Process Regression]] learning page.
!! Gekko Optimization of GPR Model
The following sections contain the code blocks for Gekko Optimization of a GPR model that minimizes the GPR prediction and uncertainty.
(:source lang=python:)
import numpy as np
import matplotlib.pyplot as plt
from gekko import GEKKO
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C
# Defining the source function
def f(x):
return np.sin(10 * x) * x + np.random.normal(0, 0.1, x.shape)
# Generating the data
np.random.seed(0)
xl = np.linspace(0, 1, 100)
y_true = f(xl)
y_measured = f(xl)
# Define kernel and Gaussian Process Regressor
kernel = C(1.0, (1e-3, 1e3)) * RBF(0.1, (1e-2, 1e2))
gpr = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=10)
# Fit to data
gpr.fit(xl[:, np.newaxis], y_measured)
# Optimization with Gekko
m = GEKKO(remote=False)
m.x = m.Var(value=0.5, lb=0, ub=1)
m.obj(f(m.x))
m.solve(disp=False)
opt_val = m.x.value
(:sourceend:)
'''Explanation:'''
1. Import the necessary libraries including NumPy, Matplotlib, Gekko, and Scikit-learn's Gaussian Process Regressor and kernels.
2. Define the source function ''f(x)'' which includes some noise.
3. Generate the data for the GPR model using the source function.
4. Define the kernel and initialize the Gaussian Process Regressor.
5. Fit the GPR model to the generated data.
6. Set up the Gekko optimization model, define the variable and the objective function, and solve the optimization problem.
(:source lang=python:)
# Define the Gekko optimization model for minimizing the uncertainty
m2 = GEKKO(remote=False)
m2.x = m2.Var(value=0.5, lb=0, ub=1)
model_pred, model_std = gpr.predict(xl[:, np.newaxis], return_std=True)
m2.obj(model_std[int(m2.x.value * 100)])
m2.solve(disp=False)
opt_val2 = m2.x.value
(:sourceend:)
'''Explanation:'''
1. Initialize another Gekko optimization model for minimizing the uncertainty.
2. Define the variable and the objective function based on the GPR model's predicted standard deviation.
3. Solve the optimization problem.
(:source lang=python:)
# Combined optimization for prediction and uncertainty
m3 = GEKKO(remote=False)
m3.x = m3.Var(value=0.5, lb=0, ub=1)
m3.Obj(f(m3.x) + model_std[int(m3.x.value * 100)])
m3.solve(disp=False)
opt_val3 = m3.x.value
(:sourceend:)
'''Explanation:'''
1. Set up a combined optimization problem that minimizes both the GPR prediction and the uncertainty.
2. Define the variable and the objective function combining both the prediction and uncertainty.
3. Solve the optimization problem.
(:source lang=python:)
# Plotting results
plt.figure(figsize=(8,8))
plt.subplot(2,1,1)
plt.plot(xl, f(xl), 'b-', label='Source function')
plt.plot(xl, y_measured, '.', label='Measured points')
plt.plot(xl, model_pred, '--', label='GPR model', color='green')
plt.fill_between(xl, model_pred - 1.96 * model_std, model_pred + 1.96 * model_std, alpha=0.3, color='green')
plt.scatter([opt_val[0]], [opt_val[1]], label='GPR model minimized', color='red', marker='s', s=100, zorder=3)
plt.scatter([opt_val2[0]], [opt_val2[1]], label='GPR uncertainty minimized', color='black', marker='o', s=100, zorder=3)
plt.scatter([opt_val3[0]], [opt_val3[1]], label='Combined optimization', color='blue', marker='^', s=100, zorder=3)
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=10, frameon=False)
plt.subplot(2,1,2)
plt.plot(xl, model_std, 'k--', label='GPR uncertainty')
plt.scatter([opt_val2[0]], [opt_val2[2]], label='GPR uncertainty minimized', color='black', marker='o', s=100, zorder=3)
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=10, frameon=False)
plt.tight_layout()
plt.savefig('combined.png', dpi=300)
plt.show()
(:sourceend:)
'''Explanation:'''
1. Create a plot to visualize the source function, measured points, and GPR model.
2. Add confidence intervals for the GPR model predictions.
3. Highlight the optimized values for the different optimization problems.
4. Display the plot.