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Abstract

This paper describes nonlinear methods in model building, dynamic data
reconciliation, and dynamic optimization that are inspired by researchers and
motivated by industrial applications. A new formulation of the ℓ1-norm objec-
tive with a dead-band for estimation and control is presented. The dead-band in
the objective is desirable for noise rejection, minimizing unnecessary parameter
adjustments and movement of manipulated variables. As a motivating exam-
ple, a small and well-known nonlinear multivariable level control problem is
detailed that has a number of common characteristics to larger controllers seen
in practice. The methods are also demonstrated on larger problems to reveal
algorithmic scaling with sparse methods. The implementation details reveal ca-
pabilities of employing nonlinear methods in dynamic applications with example
code in both Matlab and Python programming languages.

Keywords: advanced process control, differential algebraic equations, model
predictive control, dynamic parameter estimation, data reconciliation,
nonlinear control, dynamic optimization

1. Introduction1

Applications of Model Predictive Control (MPC) are ubiquitous in a number2

of industries such as refining and petrochemicals [1]. Applications are also some-3

what common in chemicals, food manufacture, mining, and other manufacturing4

industries [2]. Contributions by Morari and others have extended the MPC ap-5

plications to building climate control [3, 4], stochastic systems [5, 6], induction6

motors [7], and other fast processes with explicit MPC [8, 9, 10, 11, 12, 13]. A7

majority of the applications employ linear models that are constructed from em-8

pirical model identification, however, some of these processes have either semi-9
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batch characteristics or nonlinear behavior. To ensure that the linear models10

are applicable over a wider range of operating conditions and disturbances, the11

linear models are retrofitted with elements that approximate nonlinear control12

characteristics. Some of the nonlinear process is captured by including gain13

scheduling, switching between multiple models depending on operating con-14

ditions, and other logical programming when certain events or conditions are15

present. The art of using linear models to perform nonlinear control has been16

refined by a number of control experts to extend linear MPC to a wider range of17

applications. While this approach is beneficial in deploying applications, main-18

tenance costs are increased and sustainability is decreased due to the complexity19

of the heuristic rules and configuration.20

A purpose of this article is to give implementation details on using nonlin-21

ear models in the typical steps of dynamic optimization including (1) model22

construction, (2) fitting parameters to data, (3) optimizing over a future pre-23

dictive horizon, and (4) transforming differential equations into sets of algebraic24

equations. Recent advancements in numerical techniques have permitted the di-25

rect application of nonlinear models in control applications [14], however, many26

nonlinear MPC applications require advanced training to build and sustain an27

application. Perhaps the one remaining obstacle to further utilization of nonlin-28

ear technology is the ease of deploying and sustaining applications by researchers29

and practitioners. Up to this point, there remain relatively few actual industrial30

applications of control based on nonlinear models. An objective of this paper31

is to reduce the barriers to implementation of nonlinear advanced control ap-32

plications. This is attempted by giving implementation details on the following33

topics:34

• nonlinear model development35

• parameter estimation from dynamic data36

• model predictive control with large-scale models37

• direct transcription for solution of dynamic models38

In addition to the theoretical underpinnings of the techniques, a practical39

application with process data is used to demonstrate model identification and40

control. The application used in this paper is a simple level control system41

that was selected to illustrate the concepts without burdening the reader with42

model complexity. In practice, much larger and more complex systems can be43

solved using these techniques. An illustration of scale-up to larger problems44

gives an indication of the size that can be solved with current computational45

resources. The example problems are demonstrated with the APMonitor Op-46

timization Suite [15] [16], freely available software for solution of linear pro-47

gramming (LP), quadratic programming (QP), nonlinear programming (NLP),48

and mixed-integer (MILP and MINLP) problems. Several other software plat-49

forms can also solve dynamic optimization problems with a variety of modeling50

systems, solution strategies, and solvers [17] [18] [19] [20] [21] [22].51
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Of particular interest for this overview is the transformation of the differ-52

ential and algebraic equation (DAE) systems into equivalent NLP or MINLP53

problems that can be solved by large-scale optimizers such as the active set54

solver APOPT [23] and the interior point solver IPOPT [24]. Specific examples55

are included in the appendices with commands to reproduce the examples in56

this paper. Some other examples include applications of computational biology57

[25], unmanned aerial systems [26], chemical process control [27], solid oxide fuel58

cells [28, 29], industrial process fouling [30], boiler load following [31], energy59

storage [32, 33, 34], subsea monitoring systems [35, 36, 37], and friction stir60

welding of spent nuclear fuel [38].61

This paper includes a number of innovative techniques for formulating large-62

scale control and optimization problems. A dead-band is added to well-known63

ℓ1-norm objective forms for estimation and optimization. This form is different64

than the forms previously proposed [39] [40] in that it specifies a dead-band65

for noise rejection and move suppression. The formulation allows for batch or66

periodic control and avoids a separate steady-state target calculation. Similar67

characteristics to prior work [41] include tuning for speed of response, ranked68

utilization of manipulated variables (MVs), treatment of controlled variables69

(CVs) with equal concern, and prioritization among separate sets of MVs and70

CVs.71

The objective form presented here for estimation and control is compared72

to squared-error or ℓ2-norm objectives that are reported in the literature. The73

appendices include concise source code that can be used to reproduce the results74

or serve as a framework for further applications. The target audience is the75

practitioner or researcher interested in applying nonlinear estimation and control76

to nonlinear dynamic applications.77

2. Nonlinear Modeling78

A critical aspect of any controller is obtaining a sufficiently correct model79

form. The model form may include adjustable parameters that are not di-80

rectly measurable but can be tuned to match both steady-state and dynamic81

data. Model identification involves adjustment of parameters to fit process data.82

Models may be linear or nonlinear, empirical or based on fundamental forms83

that results from material and energy balances, reaction kinetic mechanisms, or84

other pre-defined model structure. The foundation of many of these correlations85

is on equations of motion, individual reaction expressions, or balance equations86

around a control volume such as accumulation = inlet− outlet+ generation−87

consumption. In the case of a mole balance, for example, this includes molar88

flows, reactions, and an accumulation term
(

dni

d t
= (ni)in − (ni)out − (ni)rxn

)

.89

Model structure may also include constraints such as fixed gain ratios, con-90

straints on compositions, or other bounds that reflect physical realism. De-91

tailing the full range of potential model structures is outside the scope of this92

document. Equation 1 is a statement of a general model form that may include93
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differential, algebraic, continuous, binary, and integer variables.94

0 = f

(

d x

d t
, x, y, p, d, u

)

(1a)

95

0 = g(x, y, p, d, u) (1b)
96

0 ≤ h(x, y, p, d, u) (1c)

The solution of Equation 1 is determined by the initial state x0, a set of param-97

eters p, a trajectory of disturbance values d = (d0,d1,. . . ,dn−1), and a sequence98

of control moves u = (u0,u1,. . . ,un−1). Likewise, the variables values may be99

determined from the equations such as differential x or algebraic equations y.100

The equations include differential f , algebraic g, and inequality constraints h.101

The inequality constraints are included to model physical phenomena such as102

phase changes where complementarity conditions are required. It is impor-103

tant that the differential terms dx
d t

be expressed in implicit form as shown in104

1a because some models cannot be rearranged into semi-explicit form such as105

d x
d t

= f (x, y, p, d, u). With the methods for solving DAEs demonstrated in Sec-106

tion 5, consistent initial conditions are not required and higher index DAEs are107

solvable without differentiating the high index algebraic expressions [42]. An108

example of this capability for both inconsistent initial conditions and high in-109

dex DAEs is given by a pendulum application [43]. The pendulum equations of110

motion are written as index-0 (ODE), index-1, index-2, and index-3 DAEs and111

solvable with this approach. The drawback of this approach is that the problem112

size is generally large, requiring the use of sparse methods and highly efficient113

solvers. Also, a suitable initial guess for the state trajectories is often required114

for solver convergence.115

To implement Equation 1 within the APMonitor Modeling Language, the116

following sections are defined with example values for each of the constants,117

parameters, variables, intermediates, and equations as shown in Listing 1. In118

the above example, values are defined with optional constraints and initial con-119

ditions. The sample model describes a simple objective function min (x− 5)
2

120

and a linear, first-order equation τ d x
d t

= −x + y that dynamically relates the121

input y to the output x. The intermediate variable y is defined as y = Ku to122

simplify the implicit expression below. The above model is of no specific practi-123

cal importance but is used to demonstrate the modeling format for differential124

and algebraic equations. The model is compiled at run-time to provide sparse125

first and second derivatives of the objective function and equations to solvers126

through well-known automatic differentiation techniques [44].127

3. Nonlinear Dynamic Estimation128

Along with model form, the objective function is important to ensure desir-129

able results. A common objective form is the least squares form: (ymodel − ymeasured)
2

130

(see Equation 2). Although intuitive and simple to implement, the squared error131

form has a number of challenges such as sensitivity to bad data or outliers. The132
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Listing 1: First Order Linear Model in APMonitor

Model

% Values that remain constant
Constants

K = 2 % Model Constant
End Constants

% Values s p e c i f i e d by the use r or opt imize r
Parameters

tau = 2 , >= 1 , <= 10 % Model Parameter
u = 3 , <= 100 % Manipulated Var iab le

End Parameters

% Imp l i c i t l y so lved v a r i a b l e s
Variables

x % Contro l l ed Var iab le
End Variables

% Exp l i c i t d e f i n i t i o n o f temporary v a r i a b l e s
Intermediates

y = K ∗ u % Def ine Var iab le and Equation
End Intermediates

% In e qu a l i t i e s , e q u a l i t i e s , a l g eb ra i c or d i f f e r e n t i a l equat ions
Equations

tau ∗ $x = −x + y % First−order d i f f e r e n t i a l equat ion
End Equations

End Model

sensitivity to outliers is exacerbated by the squared error objective, commonly133

proposed for dynamic data reconciliation [45] [46] [47] [48] [49].134

Table 1 details the equations of the typical squared error norm and the ℓ1-135

norm objective. The ℓ1-norm formulation in Equation 3 is less sensitive to data136

outliers and adjusts parameter values only when measurements are outside of a137

noise dead-band. A small penalty on ∆p (change in the parameter values) also138

discourages parameter movement without sufficient improvement in the model139

predictions. The change can be from an initial guess or the prior estimates from140

a Moving Horizon Estimation (MHE) approach. The ℓ1-norm is similar to an141

absolute value function but is instead formulated with inequality constraints142

and slack variables. The absolute value operator is not continuously differen-143

tiable which can cause convergence problems for Nonlinear Programming (NLP)144

solvers. On the other hand, the ℓ1-norm slack variables and inequalities create145

an objective function that is smooth and continuously differentiable. Without146

the dead-band (db = 0) in Equation 3, the equations for cU , cL are not required147

and the form reduces to the commonly known ℓ1-norm for estimation that has148

desirable performance for outlier elimination [50] [51] [52] [53] [54] [55].149

Pseudo-random binary signals (PRBS) are a popular technique to generate150

linear plant response models from data [56]. The example problem in Section151

6.1 demonstrates that PRBS-generated data can be used to determine optimal152

parameters for nonlinear dynamic models as well. Another technique for fit-153

ting model parameters to process data is the use of multiple steady-state data154
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Table 1: Estimation: Two Forms for Dynamic Data Reconciliation

Estimation with a Squared Error Objective

min
x,y,p,d

Φ = (yx − y)T Wm (yx − y) + ∆pT c∆p + (y − ŷ)T Wp (y − ŷ)

s.t. 0 = f
(

d x
d t

, x, y, p, d, u
)

0 = g(x, y, p, d, u)
0 ≤ h(x, y, p, d, u)

(2)

Estimation with an ℓ1-norm Objective with Dead-band

min
x,y,p,d

Φ = wT
m (eU + eL) + wT

p (cU + cL) + ∆pT c∆p

s.t. 0 = f
(

d x
d t

, x, y, p, d, u
)

0 = g(x, y, p, d, u)
0 ≤ h(x, y, p, d, u)

eU ≥ y − yx + db
2

eL ≥ yx − db
2
− y

cU ≥ y − ŷ

cL ≥ ŷ − y

eU , eL, cU , cL ≥ 0

(3)

Nomenclature for Equations 2 and 3

Φ objective function

yx measurements (yx,0, . . . , yx,n)
T

y model values (y0, . . . , yn)
T

ŷ prior model values (ŷ0, . . . , ŷn)
T

wm, Wm measurement deviation penalty
wp, Wp penalty from the prior solution
c∆p penalty from the prior parameter values
db dead-band for noise rejection
x, u, p, d states (x), inputs (u), parameters (p), or un-

measured disturbances (d)
∆p change in parameters
f, g, h equation residuals, output function, and in-

equality constraints
eU , eL slack variable above and below the measure-

ment dead-band
cU , cL slack variable above and below a previous

model value
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sets [57]. Control engineers identify steady-state periods that cover the major155

process operating regions of interest. One of the drawbacks to fitting a model156

with steady-state data is that dynamic parameters cannot be fit from the data.157

Dynamic parameters are those values that are multiplied by the derivatives158

with respect to time in the equations. In the case of a linear first order sys-159

tem
(

τ d y

d t
= −y +Ku

)

the dynamic parameter is τ . However, process time160

constants can typically be estimated from process fundamentals such as vessel161

holdups and flow rates. In many cases, the time constants can be approximated162

reasonably well. However, using only steady-state data for fitting parameters163

can limit the observability of certain parameters that can only be determined164

with dynamic data. If nonlinear MPC is to be used to the full potential, dynamic165

data must be used to fit the models.166

Using dynamic data to fit nonlinear dynamic models has a number of chal-167

lenges. One of the challenges with the simultaneous solution approach is that168

the data reconciliation problem can be very large. The data reconciliation prob-169

lem is large because a discretization point of the DAE model must be calculated170

at every time instant where a measurement is available. Using the simultaneous171

optimization of model and objective function, the number of model states at172

a particular time is multiplied by the number of time steps in the prediction173

horizon. On the other hand, the sequential solution approach (solving objec-174

tive function and model equations successively) reduces the number of variables175

that must be solved simultaneously [58]. This approach is better suited to sys-176

tems that have a small number of decision variables yet large number of model177

variables or a long time horizon.178

Other challenges in aligning the model to measured values include lack of179

data diversity to obtain certain constants or co-linearity of parameters. The180

sensitivity of parameters to the objective function can help guide which param-181

eters have a significant effect on the outcome [59]. One solution to automatically182

eliminate parameters with little sensitivity to the objective is to impose a small183

penalty on parameter movement from a nominal value [60]. This approach au-184

tomatically prevents unnecessary movement of parameter values that have little185

effect on the results of the parameter estimation.186

4. Nonlinear Control and Optimization187

There are many challenges to the application of DAEs directly in nonlinear188

control and optimization [61]. Recent advances include simultaneous methods189

[58], decomposition methods [62] [63], efficient nonlinear programming solvers190

[24], improved estimation techniques [64] [65] [66] [67], and experience with191

applications to industrial systems [60] [68]. In particular, applications require192

high service availability, reasonable extrapolation to operating conditions out-193

side the original training set, and explanatory tools that reveal the rationale194

of the optimization results. Other motivating factors include consideration of195

lost opportunity during application development, sustainability of the solution,196

and ease of development and maintenance by engineers without an advanced197
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training. In many instances non-technical challenges such as equipment and198

base-control reliability, operator training, and management support are critical199

factors in the success of an application [27].200

A common objective function form is the squared error or ℓ2-norm objec-201

tive (see Equation 4). In this form, there is a squared penalty for deviation202

from a setpoint or desired trajectory. The squared error objective is simple to203

implement, has a relatively intuitive solution, and is well suited for Quadratic204

Programming (QP) or Nonlinear Programming (NLP) solvers.205

An alternative form of the objective function is the ℓ1-norm objective (see206

Equation 5) that has a number of advantages over the squared error form similar207

to those discussed for the estimation case. For control problems, the advantage is208

not in rejection of outliers but in the explicit prioritization of control objectives.209

The ℓ1-norm simultaneously optimizes multiple objectives in one optimization210

problem as the solver manipulates the degrees of freedom selectively for the211

objective function contributions that have the highest sensitivity. Lower ranking212

objectives are met as degrees of freedom remain. However, the best objective213

function will always be met by minimizing the error associated with high ranking214

objectives. For problems that have safety, environmental, economic, and other215

competing priorities, the ℓ1-norm with a dead-band gives an intuitive form that216

manages these trade-offs as shown in Figure 1.217
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Priority 2: Environmental Constraint
Priority 3: Economic Constraint
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Figure 1: Competing priorities with safety, environmental, and economic ranges.

Priorities are assigned by giving the highest weighting (whi, wlo) to the most218

important objectives. For the hypothetical pressure control example in Figure219

1 the safety constraint is never violated (highest priority). The economic target220

(lowest priority) is only satisfied when the other constraints are also satisfied221

from 0-2 minutes and drives the response along the upper limit of the envi-222

ronmental constraint from 2-5 minutes. When the environmental constraint223

(second highest priority) is violated, the response is driven to the lower limit of224

the safety constraint to have the least penalty for the environmental violation225

from 5-10 minutes. This dead-band also gives flexibility to have non-symmetric226
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objective functions in cases where an upper or lower limit is more important.227

Table 2 details the square error and ℓ1-norm objective functions.228
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Figure 2: Three examples of ℓ1-norm dead-band trajectory regions for model predictive con-
trol.

The reference trajectories in both the squared-error and ℓ1-norm moderate229

the speed at which the controller attempts to reach the desired setpoint sp or230

reach the desired range splo, sphi as shown in Figure 2. Three different ℓ1-231

norm trajectories are shown with varying initial conditions and are classified232

as a reference trajectory (inner-most), a pure dead-band (constant band), and233

a funnel trajectory (widest at the beginning). The initial conditions for yt,hi234

and yt,lo adjust the starting positions of the reference trajectory region of no235

penalty. For dead-band control, the initial conditions are set to the final target236

values with yt,hi = sphi and yt,lo = splo. If restrictions on near-term dynamics237

are less important than reaching a target steady-state value, the gap between238

yt,hi and yt,lo can be made large relative to the range of the final dead-band239

sphi and splo as shown by the funnel trajectory in Figure 2.240

5. Numerical Solution of DAE Systems241

Two types of methods for solving nonlinear MPC and dynamic optimization242

problems include sequential methods and simultaneous methods [58]. With the243

more compact sequential approach, the model equations are repeatedly solved244

to convergence tolerance to provide an objective function and gradient. The su-245

pervisory layer then proposes new decision variables and the simulation process246

is repeated. Conversely, the simultaneous approach involves solving the model247

equations and optimizing the objective function in parallel.248

Sequential methods are easier to implement, but may fail to converge in a249

reasonable time for problems with a large number of degrees of freedom, thus250

delivering sub-optimal solutions. However, because sequential methods solve251

the model equations by forward integration, the solutions are always feasible252

with respect to the dynamic model, if not optimal. The simultaneous solution253

approach may be advantageous for certain problems, especially boundary value254

problems, terminal time constraints, and systems with unstable modes [42]. Si-255

multaneous optimization approaches generally have a computational advantage256
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Table 2: Control: Two Objective Forms for Nonlinear Dynamic Optimization

Control Squared Error Objective

min
x,y,u

Φ = (y − yt)
T
Wt (y − yt) + yT cy + uT cu +∆uT c∆u

s.t. 0 = f
(

d x
d t

, x, y, p, d, u
)

0 = g(x, y, p, d, u)
0 ≤ h(x, y, p, d, u)

τc
d yt

d t
+ yt = sp

(4)

Control ℓ1-norm Objective

min
x,y,u

Φ = wT
hiehi + wT

loelo + yT cy + uT cu +∆uT c∆u

s.t. 0 = f
(

d x
d t

, x, y, p, d, u
)

0 = g(x, y, p, d, u)
0 ≤ h(x, y, p, d, u)

τc
d yt,hi

d t
+ yt,hi = sphi

τc
d yt,lo

d t
+ yt,lo = splo

ehi ≥ y − yt,hi
elo ≥ yt,lo − y

(5)

Nomenclature for Equations 4 and 5

Φ objective function

y model values (y0, . . . , yn)
T

yt, yt,hi, yt,lo desired trajectory target or dead-band
whi, wlo penalty outside trajectory dead-band
cy, cu, c∆u cost of y, u and ∆u, respectively
u, x, p, d inputs (u), states (x), parameters (p), and dis-

turbances (d)
f, g, h equation residuals (f), output function (g),

and inequality constraints (h)
τc time constant of desired controlled variable re-

sponse
elo, ehi slack variable below or above the trajectory

dead-band
sp, splo, sphi target, lower, and upper bounds to final set-

point dead-band
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for control problems with many decision variables but with a moderate number257

of state variables. Sequential approaches may have computational advantage for258

a small number of decision variables coupled with large-scale models. Typical259

cases of large-scale models are distributed parameter systems. In this case, the260

computational gain obtained through simultaneous methods from the elimina-261

tion of repeated integration is overcome by the very large number of space and262

time discretized states.263

A characteristic of the simultaneous problem formulation is that a general264

DAE model can be posed in open equation format (refer to Equation 1). In265

open equation format, DAE models of index-1 or higher are solved without re-266

arrangement or differentiation. The values of certain parameters, disturbances,267

or decision variables are discrete values over the time horizon to make the prob-268

lem tractable for numerical solution (e.g. MVs in Figure 3). On the other hand,269

integrated variables are determined from differential and algebraic equations270

and generally have a continuous profile (e.g. CVs in Figure 3). One solution

Figure 3: Dynamic equations are discretized over a time horizon and solved simultaneously.
The solid nodes depict starting and ending locations for local polynomial approximations that
are pieced together over the time horizon. With one internal node for each segment, this
example uses a 2nd order polynomial approximation for each step.

271

approach to this dynamic system is the conversion of the DAE system to alge-272

braic equations through direct transcription [14]. This technique is also known273

as orthogonal collocation on finite elements [69]. Converting the DAE system274

to a Nonlinear Programming (NLP) problem permits the solution by large-scale275

solvers [46] [70]. Additional details of the simultaneous approach are shown in276

Section 5.1 and an example problem in Section 5.2.277

5.1. Weighting Matrices for Orthogonal Collocation278

The objective is to determine a matrix M that relates the derivatives to the279

non-derivative values over a horizon at points 1,. . . ,n as shown in Equation 6.280

In the case of Equation 6, four points are shown for the derivation. The initial281

value, x0, is a fixed initial condition or otherwise equal to the final point from282
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the prior interval.283




ẋ1

ẋ2

ẋ3



 = M









x1

x2

x3



−





x0

x0

x0







 (6)

The solution of the differential equations at discrete time points is approximated284

by a Lagrange interpolating polynomial as shown in Equation 7.285

x(t) = A+Bt+ Ct2 +Dt3 (7)

Time points for each interval are chosen according to Lobatto quadrature. All286

time points are shifted to a reference time of zero (t0 = 0) and a final time of287

tn = 1. For 3 nodes per horizon step, the one internal node is chosen at t1 = 1
2
.288

An example of internal nodes are displayed in Figure 3 where the horizon is289

broken into multiple intervals of Lobatto quadrature with 3 nodes per horizon290

step (one internal node). In the case of 4 nodes per horizon step, the internal291

values are chosen at t1 = 1
2
−

√
5

10
and t2 = 1

2
+

√
5

10
. With 5 nodes, time values are292

1
2
−

√
21
14

, 1
2
, and 1

2
+

√
21
14

. At 6 nodes, time values are 1
2
−

√
7+2

√
7

42
, 1
2
−

√
7−2

√
7

42
,293

1
2
+

√
7−2

√
7

42
, and 1

2
+

√
7+2

√
7

42
.294

In this derivation, a third-order polynomial approximates the solution at the295

four points in the horizon. Increasing the number of collocation points increases296

the corresponding polynomial order. For initial value problems, the coefficient A297

is equal to x0, when the initial time is arbitrarily defined as zero. To determine298

the coefficients B, C, and D, Equation 7 is differentiated and substituted into299

Equation 6 to give Equation 8. Note that the A coefficient from Equation 7 is300

cancelled by x0 on the right-hand side of Equation 8.301





B + 2Ct1 + 3Dt21
B + 2Ct2 + 3Dt22
B + 2Ct3 + 3Dt23



 =M





Bt+ Ct21 +Dt31
Bt+ Ct22 +Dt32
Bt+ Ct23 +Dt33









1 2t1 3t21
1 2t2 3t22
1 2t3 3t23









B

C

D



 =M





t1 t21 t31
t2 t22 t32
t3 t23 t33









B

C

D





(8)

Finally, rearranging and solving for M gives the solution shown in Equation 9.302

M =





1 2t1 3t21
1 2t2 3t22
1 2t3 3t23









t1 t21 t31
t2 t22 t32
t3 t23 t33





−1

(9)

The final form that is implemented in practice is shown in Equation 10 by303

inverting M and factoring out the final time tn
(

tnN = M−1
)

). This form304

improves the numerical characteristics of the solution, especially as the time305

step approaches zero (tn → 0).306

tnN





ẋ1

ẋ2

ẋ3



 =





x1

x2

x3



−





x0

x0

x0



 (10)
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The matrices that relate d x
d t

to x are given in Tables A.6 and A.7 in Appendix307

A for intervals with 3 to 6 nodes.308

5.2. Example Solution by Orthogonal Collocation309

A simultaneous solution demonstrates the application of orthogonal collo-310

cation. In this case, the first order system τ d x
d t

= −x is solved at 6 points311

from t0 = 0 to tn = 10 using Equation A.4. In this case τ = 5 and the initial312

condition is specified at x0 = 1. For this problem, the time points for d x
d t

and x313

are selected as 0, 1.175, 3.574, 6.426, 8.825, and 10. The value of x is specified314

at t0 = 0 due to the initial condition. As a first step, equations for d x
d t

are315

generated in Equation 11.316

d x

d t
=













ẋ1

ẋ2

ẋ3

ẋ4

ẋ5













= (tnN5x5)
−1

























x1

x2

x3

x4

x5













−













x0

x0

x0

x0

x0

























(11)

Substitution of Equation 11 into the derivatives of the model equation yields317

a linear system of equations as shown in Equation 12.318

τ
d x

d t
=− x

τ (tnN5x5)
−1

























x1

x2

x3

x4

x5













−













x0

x0

x0

x0

x0

























=−













x1

x2

x3

x4

x5













(12)

Equation 12 is rearranged and solved with linear algebra as shown in Equa-319

tion 13.320













x1

x2

x3

x4

x5













=
(

τ (tnN5x5)
−1

+ I
)−1

τ (tnN5x5)
−1













x0

x0

x0

x0

x0













=













0.791
0.489
0.277
0.171
0.135













(13)

The numerical solution given in Equation 13 is within three significant figures321

of the analytical solution x(t) = x0e
− t

τ , verifying that the numerical solution322

approximations are sufficiently accurate in this case. This is not always the case323

and discretization must sometimes be refined to reduce numerical error.324

6. Application: Quadruple Tank Level Control325

A quadruple tank process shown in Figure 4 has been the subject of the-326

oretical [71] and practical demonstrations [72] [73] [74] [75] of a multivariable327
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and highly coupled system [73]. The four tank process has also been a test328

application for application of decentralized and coordinated control techniques329

[76] [77]. A number of other interesting characteristics of this process include330

configurations that cause the system to go unstable. This can be observed by331

showing that there are unstable poles in a transfer function representation of332

the system. Another challenge is the nonlinear tendency of the system. For333

example, this can be characterized by variable gains of the MVs to the CVs.334

 

Figure 4: Diagram of the quadruple tank process. Pump 1 supplies tanks 1 and 4 while pump
2 supplies tanks 2 and 3.

The four tank process has two pumps that are adjusted with variable voltage335

to pump 1 (v1) and pump 2 (v2). A fraction of water from pump 1 is diverted336

to tank 1 proportional to γ1 and to tank 4 proportional to (1− γ1). Similarly,337

a fraction of water from pump 2 is diverted to tank 2 proportional to γ2 and338

to tank 3 proportional to (1− γ2). The valves that determine γ1 and γ2 are339

manually adjusted previous to the experiment and are held constant through-340

out a particular period of data collection. All tanks are gravity drained and341

tank 3 outlet enters tank 1. Tank 4 outlet enters tank 2, creating a coupled342

system of MVs and CVs. For (γ1 + γ2) ∈ (0, 1), the linearized system has no343

RHP zeros with for (γ1 + γ2) ∈ (1, 2), the linearized system has one RHP zero344

[71]. A RHP zero indicates that there may either be overshoot or an inverse345

response to a step change in the MV.346

A combination of material balances and Bernoulli’s law yields the process347

model for the four tank process as shown in Equation 14. The equations are348
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also displayed in Appendix B in the APMonitor Modeling Language.349

qa =kmv1 + kb

qb =kmv2 + kb
(14a)

350

q1,in =γ1qa + q3,out

q2,in =γ2qb + q4,out

q3,in =(1− γ2) qb

q4,in =(1− γ1) qa

(14b)

351

q1,out =c1
√

2gh1

q2,out =c2
√

2gh2

q3,out =c3
√

2gh3

q4,out =c4
√

2gh4

(14c)

352

A1
d h1

d t
=q1,in − q1out

A2
d h2

d t
=q2,in − q2out

A3
d h3

d t
=q3,in − q3out

A4
d h4

d t
=q4,in − q4out

(14d)

where γ1 is the split factor for tanks 1 and 4 and γ2 is the split factor leading353

to tanks 2 and 3 and the range of allowable values is 0 ≤ γi ≤ 1 . When γi = 0354

all of the flow from the pumps enters the top tanks (3 or 4) and when γi = 1 all355

of the flow enters the lower tanks (1 or 2). The other parameters for this model356

include ci as the outflow factor for tank i, km as the valve linearization slope, kb357

as the valve linearization intercept, and Ai as the cross-sectional area of tank i.358

The variables include qa as the flow from pump 1, qb as the flow from pump 2,359

qi,in as the inlet flow to tank i, qi,out as the outlet flow from tank i, and hi as360

the height of liquid in tank i.361

Equation set 14a is the relationship between pump voltage and flow while362

Equation set 14b defines the inlet flow to each of the tanks. Equation set 14c363

is the outlet flow from each of the tanks with tanks 3 and 4 draining to tanks364

1 and 2, respectively. Finally, equation set 14d is a material balance around365

each tank with accumulation, inlet, and outlet terms. In this case, the density366

is assumed to be constant allowing a volumetric balance to be used instead.367

The process model is nonlinear because the outlet flow is proportional to the368

square root of the liquid level. In this experiment, tanks 1 and 3 and tanks 2369

and 4 have the same outlet diameter making c1 = c3 and c2 = c4. Additionally,370

tanks 1 and 3 have a cross-sectional area of 28 cm2 while tanks 2 and 4 have a371

cross-sectional area of 32 cm2. Unknown parameters include γ1, γ2, c1,3, c2,4,372

km, and kb. The unknown parameters are determined from dynamic data.373
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6.1. Quadruple Tank Parameter Estimation374

For the quadruple tank process, the model has only 14 differential or al-375

gebraic states. When calculated over the PRBS data horizon, the resulting376

optimization problem has 5766 to 11,526 variables, depending on the objective377

function form. There are additional equations for the differential states in the378

optimization problem from the orthogonal collocation transformation (see Sec-379

tion 5). Direct transcription by orthogonal collocation on finite elements is one380

of the methods to convert DAE systems into a Nonlinear Programming (NLP)381

problem [78]. This is accomplished by approximating time derivatives of the382

DAE system as algebraic relationships as discussed previously. Figure 5 shows383

the results of the reconciliation to the PRBS-generated data.384
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Figure 5: Results of the dynamic parameter estimation using PRBS generated data.

Only levels for tanks 1 and 2 are measured as shown in Figure 5. For the385

quadruple tank process 6 parameters were estimated, namely γ1, γ2, c1,3, c2,4,386

km, and kb. The optimization solution overview is shown in Table 3 while387

initial and final values of the parameters are displayed in Table 4. Matlab and388

Python scripts for configuring and solving this problem are shown in Listing 3389

of Appendix C. The Matlab or Python scripts use the APMonitor Modeling390

Language [15] model (see Appendix B) to create the differential and algebraic391

(DAE) model. APMonitor translates the problem into an NLP and solves the392

equations with one of many large-scale solvers. The particular solver used in this393
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study is IPOPT, an interior point large-scale nonlinear programming solver [24],394

for solving the resulting optimization problem. A summary of the optimization395

problem and the solution is shown in Table 3.396

Table 3: Summary of the Dynamic Data Reconciliation

Optimization Problem Overview

Description ℓ1-Norm Squared
Error

Iterations 33 10
CPU Time (2.5 GHz Intel i7 Processor) 32.5 sec 10.3 sec
Number of Variables 11,526 5,766
Number of Equations 11,520 5,760
Degrees of Freedom 6 6
Number of Jacobian Non-zeros 40,312 28,792

Using different objective function forms resulted in similar parameter es-397

timates and comparable model predictions. As seen in Table 4, the optimal398

values for the parameters were well within the upper and lower constraints.399

These constraints were set for both ℓ1-norm and squared-error problems based400

on knowledge of the process; a violation of these constraints would indicate un-401

reasonable parameter values. In this case, the ℓ1-norm optimization problem402

had roughly twice the number of variables and required 3 times the amount of403

CPU time to find a solution. In this case, the increased computational time is404

an additional cost associated with ℓ1-norm estimation.405

Table 4: Results of the Dynamic Data Reconciliation

Initial and Final Values of the Estimation Problem

Parameter Initial
Value

Lower
Bound

Upper
Bound

ℓ1-Norm
Results

Squared
Error
Results

γ1 0.43 0.20 0.80 0.627 0.585
γ2 0.34 0.20 0.80 0.591 0.548
c1,3 0.071 0.010 0.200 0.0592 0.0630
c2,4 0.057 0.010 0.200 0.0548 0.0582
km 10.0 3.0 20.0 3.543 3.444
kb 0.00 -2.00 2.00 -1.675 -0.810

Improved outlier rejection and parameter estimates are shown by purpose-406

fully introducing corrupted data. Three cases are shown in Figure 6 with the407

corrupted data being introduced at 1200 seconds.408

The first case of corrupted data is a single outlier that is 10 cm higher than409

the actual measured value. While this specific outlier could easily be removed410
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Figure 6: Three cases of corrupted data with (1) single outlier, (2) measurement drift, and
(3) measurement noise.

by automated outlier detection, it may not be possible to eliminate all outliers411

from data especially for real-time or large-scale systems. A second case involves412

measurement drift at a rate of +0.1 cm per second. After 550 seconds, the413

measurement drift is corrected and the measurement returns to actual measured414

values. A third case introduces normally distributed measurement noise with415

zero mean and standard deviation of one.416

For all cases, it is desirable to retain original parameters even in the presence417

of corrupted data. The ℓ1-norm form outperforms the squared-error form in two418

of the three cases and slightly better on the case with added noise. In the case of419

the single outlier, the ℓ1-norm parameter values do not change, demonstrating420

the value in rejecting outlier values. In the case of measurement drift, the ℓ1-421

norm error parameters change by from 0-2% while the squared-error parameters422

change between 3-37%. Finally, for the measurement noise case, the ℓ1-norm and423

squared-error parameters both change although the squared-error parameters424

change by roughly twice that of the ℓ1-norm parameters. This corrupted data425

example demonstrates the ability of the ℓ1-norm to better reject outliers, sensor426

drift, and noise.427

6.2. Nonlinear Optimization of the Quadruple Tank System428

Continuing with the quadruple tank example, the squared error model pa-429

rameters from Section 6.1 are used to update the model. Either the squared-430

error or the ℓ1-norm objective estimation values can be used because of nearly431
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Table 5: Changing Parameter Results with Corrupted Data

Parameter Value Change with ℓ1-norm

γ1 γ2 c1,3 c2,4 km kb

Case 1 (Outlier) 0% 0% 0% 0% 0% 0%
Case 2 (Drift) 1% 1% 2% 0% 1% 0%
Case 3 (Noise) 5% 2% 8% 4% 2% 21%

Parameter Value Change with Squared Error

γ1 γ2 c1,3 c2,4 km kb

Case 1 (Outlier) 11% 6% 3% 4% 6% 42%
Case 2 (Drift) 3% 11% 15% 5% 3% 37%
Case 3 (Noise) 9% 4% 2% 9% 7% 72%

equivalent results. Data reconciliation can either be performed once or repeat-432

edly as new measurements arrive in a receding horizon approach. As new mea-433

surements arrive, the model is readjusted to fit the data and continually refine434

the model predictions. These updated parameters can then be used in the435

NMPC application to better predict the future response.436

Once the model is updated, nonlinear optimization calculates the optimal437

trajectory of the MV. In this case, a future move plan of the voltage to the438

two pumps is calculated as shown in Figure 7. MV moves are constrained by439

change, upper, and lower limits. The change constraints are set to limit the440

amount that the MV can move for each control action step and in this case441

the move limit is set to |∆MV | ≤ 1. With a cycle time of 1 second, the rate442

that the voltage to the pump can change is ±1 V
sec

. The control action is also443

constrained by absolute minimum (MVL = 1) and maximum (MVU = 6) limits.444

The lower limit is reached for the first pump (v1) and remains at the lower limit445

for 30 seconds before settling at the steady state value at 1.41V . The upper446

limit is reached for second pump (v2) within two steps into the horizon and447

afterwards settles to a steady state value of 4.58V . This over-shoot or under-448

shoot of MVs is typical for CV tuning that is faster than the natural process449

time constant. The natural process time constant is the speed of response due450

to a step change in a process input. When requesting a response that is faster451

than this nominal step change, the MVs must over-react to move the process452

faster. In most cases, steady state values of the MVs are independent of the453

controller tuning. CV tuning is a critical element to achieving desirable control454

performance. Aggressive CV tuning is shown in this example, giving over- or455

under-shoot of the MVs. For CV tuning that is equal to the natural process456

time constant, there will typically be a step to the new solution. For slower457

CV tuning, the MV ramps to the steady state value. Other MPC ℓ1-norm458

formulations have particular drawbacks that either lead to dead-beat or idle459

control performance [79].460
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Figure 7: Model predictive control solution showing voltage input to the pumps 1 and 2.

There are many types of CV tuning options that are typical in linear or non-461

linear control applications. In this case, an ℓ1-norm with dead-band is demon-462

strated for the simulated controller. The speed of the CV response is dictated by463

an upper and lower first order reference trajectory with time constant τc. Only464

values that are outside this dead-band are penalized in the objective function.465

The form of this controller objective is desirable for minimizing unnecessary MV466

movement to achieve a controller objective. In this form, MV movement only467

occurs if the projected CV response is forecast to deviate from a pre-described468

range. The bottom subplot of Figure 7 displays the CV response along with the469

upper and lower trajectories that define the control objective.470

7. Large-Scale Systems471

The quadruple tank system is a small-scale system that has been included472

here and in many other benchmark studies to demonstrate control techniques473

for multi-variable systems. An additional example is the computational re-474

quirements for large-scale systems. A test of the scale-up of the simultaneous475

approach for optimization is presented here with varying problem sizes with a476

state space model. In particular, the number of MVs and CVs is varied to reveal477

computational time required to determine an optimal solution for a single cycle478

of the controller. The controller has a quadratic objective function and linear479
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constraints as shown in Equation 15.480

min
x∈Rn,y∈Rp,u∈Rm

Φ = (y − yt)
T
Wt (y − yt) + yT cy + uT cu +∆uT c∆u

s.t. d x
d t

= Ax+Bu, A = −In xn, B =











1 . . . 1
0 . . . 0
...

. . .
...

0 . . . 0











n xm

y = Cx+Du, C = Ip xn, D = 0p xm

τc
d yt

d t
+ yt = sp

0 ≤ u ≤ 10

(15)

481

The number of MVs (m) and number of CVs (p) are adjusted to vary the482

problem size. The controller is configured with Wt = Ip x p, cy = cu = c∆u =483

0m x 1, τc = 1p x 1, sp = 1p x 1, and initial condition x0 = 0n x 1. Each of the484

MVs affects each of the CVs, leading to a dense step response mapping. The485

cycle time is assumed to be 6 seconds with a prediction horizon of 120 minutes.486

The discretization times are chosen as 0, 0.1, 0.2, 0.4, 0.8, 1.5, 3, 6, 12, 25, 50,487

60, 80, 100, and 120. The non-uniform time steps allow near-term resolution488

for control action and long-term predictions for control target calculations. An489

active set solver (APOPT) and an interior point solver (IPOPT) are tested for490

the combination of MVs and CVs quantities as shown in Figure 8.491
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Figure 8: Contour plot of CPU times for varying numbers of MVs and CVs for APOPT and
IPOPT, respectively.

The APOPT solver has excellent scaling with increased number of CVs but492

poor computational scaling with increased number of MVs (decision variables).493

This is expected from an active set solver where the basis selection and active set494

switching requires intensive matrix operations. Once the correct set of active495

constraints is determined, the algorithm can rapidly converge to an optimal496

solution.497
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The largest case with 300 MVs and 300 CVs translates into an optimization498

problem with 12,600 variables, 8,400 equations, and 4,200 degrees of freedom499

(decision variables) because the equations are discretized over the time horizon.500

Others have also demonstrated large-scale MPC with an ℓ1-norm objective such501

a 400 MV/400 CV application to a paper machine cross direction control [80]502

[81]. The present case is solved in 3.8 sec with the IPOPT solver and in 39.5 sec503

with APOPT solver. A known advantage of interior point solvers is the excellent504

scaling with additional degrees of freedom. An advantage of active set solvers505

is the ability to quickly find a solution from a nearby candidate solution. A506

suggested approach is to use the interior point solver to initialize a problem and507

switch to an active set method for cycle-to-cycle cases that can be initialized508

from a prior solution.509

8. Conclusions510

This paper gives details on the implementation of nonlinear modeling, data511

reconciliation, and dynamic optimization. The examples relate the common512

steps typically deployed in linear MPC applications to a comparable proce-513

dure for nonlinear applications. As a foundation for using dynamic models, the514

process of converting differential equations into a set of algebraic equations is515

reviewed. This conversion step is necessary to solve the model and objective516

function simultaneously with NLP solvers. The application in this paper is the517

quadruple tank process that is a well-known example of multivariate control. As518

a first step, certain parameters of the model are adjusted to fit to PRBS data519

through dynamic data reconciliation. In a next step, the controller is tuned520

to provide desirable control responses for set point tracking and disturbance521

rejection. For both estimation and control cases, alternate squared error and522

ℓ1-norm error forms are compared. While the ℓ1-norm error uses additional523

variables and equations, it adds only linear equality and inequality constraints.524

Along with the overview, example Matlab and Python scripts are given in the525

Appendix as a guide to implement the problems in the text. While this is not an526

exhaustive review of all available techniques or software, it provides a platform527

and case study to advance the use of nonlinear models in control research and528

practice.529

Appendix A. Direct Transcription by Orthogonal Collocation on Fi-530

nite Elements531

The matrices that relate d x
d t

to x are given in Tables A.6 and A.7 for inter-532

vals with 3 to 6 nodes. The formula for 2 nodes reduces to Euler’s method for533

numerical integration differential equations. However, in this case the equations534

are not solved sequentially in time but simultaneously by an implicit solution535

method. Additional accuracy can be achieved over one interval with more nodes536

but more nodes also increases the number of equations and size of the problem.537

The time dynamic horizon is typically divided over a number of intervals where538
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these equations are applied. An additional set of these equations must be in-539

cluded for every differential variable that appears in the model equations. In540

this case the differential variables are treated like regular algebraic variables541

because there is an additional equation for every unknown derivative value at542

every time point.543

Table A.6: Direct Transcription to Solve Differential Equations as Sets of Algebraic Equations

Orthogonal Collocation Equations

tnN2x2
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ẋ1

ẋ2
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=

[
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−









x0

x0

x0

x0









(A.3)

tnN5x5













ẋ1

ẋ2

ẋ3

ẋ4

ẋ5













=













x1

x2

x3

x4

x5













−













x0

x0

x0

x0

x0













(A.4)

Appendix B. Quadruple Tank Model544

The quadruple tank process is represented by 14 differential and algebraic545

equations (DAEs). The following model in Listing 2 is expressed in the APMon-546

itor Modeling Language. This file and others included in the paper are available547

at APMonitor.com as a Matlab toolbox [82] or as a Python package [83].548

Appendix C. Parameter Estimation with a PRBS-Generated Signal549

The following Matlab and Python scripts in Listing 3 detail the com-550

mands necessary to reproduce the parameter estimation case presented in this551

paper. The parameter estimation uses two elements including the model file552

(4tank.apm) and a data file (prbs360.csv). The model file is shown in Appendix553

B while the data file is available for download from APMonitor.com under the554

Matlab or Python example sections.555
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Listing 2: Four Tank Model in APMonitor

M o d e l

C o n s t a n t s

% grav i t a t i o n a l cons tant (cm/s ˆ2)
g = 981
% tank cros s−s e c t i o n a l area (cmˆ2)
A r e a [ 1 ] = 28
A r e a [ 2 ] = 32
A r e a [ 3 ] = 28
A r e a [ 4 ] = 32
% r e l a t i o n o f l e v e l to vo l tage measurement (V/cm)
k c = 0.50

E n d C o n s t a n t s

P a r a m e t e r s

% re l a t i o n o f input vo l tage to pump f low rate (cmˆ3/ sec / V)
k m = 10.0 , >=3.0, <=20.0 % s l ope
k b = 0. 0 , >=−20.0, <=20.0 % in t e r c ep t
% co r r e c t i o n f a c t o r s to f i t model to r e a l data
c 1 3 = 0.071 , >0.01 , <=0.2 % out l e t f l ow c o r r e c t i o n s
c 2 4 = 0.057 , >0.01 , <=0.2 % out l e t f l ow c o r r e c t i o n s
% f r a c t i o n a l s p l i t to tank 1 vs . tank 4
gamma [ 1 ] = 0.43 , >=0, <=1
% f r a c t i o n a l s p l i t to tank 2 vs . tank 3
gamma [ 2 ] = 0.34 , >=0, <=1
% vo l tage to pump A
v 1 = 3 , >=0, <=10 % Volt
% vo l tage to pump B
v 2 = 3 , >=0, <=10 % Volt

E n d P a r a m e t e r s

V a r i a b l e s

% tank height − diameter = 6 cm , max height = 20 cm
h [ 1 ] = 12.6 , >=1e−5
h [ 2 ] = 13.0 , >=1e−5
h [ 3 ] = 4.8 , >=1e−5
h [ 4 ] = 4.9 , >=1e−5

E n d V a r i a b l e s

I n t e r m e d i a t e s

% co r r e c t i o n f a c t o r s
c [ 1 ] = c 1 3

c [ 2 ] = c 2 4

c [ 3 ] = c 1 3

c [ 4 ] = c 2 4

% pump f lows
q a = v 1 ∗ k m + k b

q b = v 2 ∗ k m + k b

% in l e t f l ows from pumps
q [ 1 ] = gamma [ 1 ] ∗ q a

q [ 2 ] = gamma [ 2 ] ∗ q b

q [ 3 ] = (1−gamma [ 2 ] ) ∗ q b

q [ 4 ] = (1−gamma [ 1 ] ) ∗ q a

% out l e t f l ows
o u t [ 1 : 4 ] = c [ 1 : 4 ] ∗ sq r t (2∗ g∗ h [ 1 : 4 ] )
% t o t a l i n l e t f l ows
i n [ 1 ] = q [ 1 ] + o u t [ 3 ]
i n [ 2 ] = q [ 2 ] + o u t [ 4 ]
i n [ 3 ] = q [ 3 ]
i n [ 4 ] = q [ 4 ]

E n d I n t e r m e d i a t e s

E q u a t i o n s

A r e a [ 1 : 4 ] ∗ $ h [ 1 : 4 ] = i n [ 1 : 4 ] − o u t [ 1 : 4 ] % $ = d i f f e r e n t i a l
E n d E q u a t i o n s

E n d M o d e l
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Table A.7: Matrices for Direct Transcription

Orthogonal Collocation Matrices

N2x2 =

[

0.75 −0.25
1.00 0.00

]

(A.5)

N3x3 =





0.436 −0.281 0.121
0.614 0.064 0.046
0.603 0.230 0.167



 (A.6)

N4x4 =









0.278 −0.202 0.169 −0.071
0.398 0.069 0.064 −0.031
0.387 0.234 0.278 −0.071
0.389 0.222 0.389 0.000









(A.7)

N5x5 =













0.191 −0.147 0.139 −0.113 0.047
0.276 0.059 0.051 −0.050 0.022
0.267 0.193 0.251 −0.114 0.045
0.269 0.178 0.384 0.032 0.019
0.269 0.181 0.374 0.110 0.067













(A.8)

Listing 3: Matlab Dynamic Estimation

1 % Add path to APM MATLAB l i b r a r i e s
2 a d d p a t h ( 'apm ' ) ;
3 % Clear MATLAB
4 c l e a r a l l ; c l o s e a l l ; c l c
5 % Server and Appl i cat ion name
6 s = ' http :// xps . apmonitor . com ' ;
7 a = ' prbs ' ;
8 % Clear prev ious app l i ca t i on
9 a p m ( s , a , ' c l e a r a l l ' ) ;

10 % Load model and data
11 a p m _ l o a d ( s , a , ' 4 tank .apm ' ) ;
12 c s v _ l o a d ( s , a , ' prbs360 . csv ' ) ;
13 % Set up va r i ab l e c l a s s i f i c a t i o n s
14 % Feedforwards
15 a p m _ i n f o ( s , a , 'FV ' , 'km ' ) ;
16 a p m _ i n f o ( s , a , 'FV ' , 'kb ' ) ;
17 a p m _ i n f o ( s , a , 'FV ' , 'gamma [ 1 ] ' ) ;
18 a p m _ i n f o ( s , a , 'FV ' , 'gamma [ 2 ] ' ) ;
19 a p m _ i n f o ( s , a , 'FV ' , ' c13 ' ) ;
20 a p m _ i n f o ( s , a , 'FV ' , ' c24 ' ) ;
21 % State va r i a b l e s
22 a p m _ i n f o ( s , a , 'SV ' , 'h [ 3 ] ' ) ;
23 a p m _ i n f o ( s , a , 'SV ' , 'h [ 4 ] ' ) ;
24 % Cont ro l l ed va r i a b l e s
25 a p m _ i n f o ( s , a , 'CV ' , 'h [ 1 ] ' ) ;
26 a p m _ i n f o ( s , a , 'CV ' , 'h [ 2 ] ' ) ;
27 % Dynamic Estimation
28 a p m _ o p t i o n ( s , a , ' nlc . imode ' , 5 ) ;
29 % Read csv f i l e
30 a p m _ o p t i o n ( s , a , ' nlc . csv r ead ' , 1 ) ;
31 % Type (1= l1−norm , 2=Squared Error )
32 a p m _ o p t i o n ( s , a , ' nlc . ev type ' , 2 ) ;
33 % Time uni t s (1= sec , 2=min , et c )
34 a p m _ o p t i o n ( s , a , ' nlc . c t r l u n i t s ' , 1 ) ;
35 a p m _ o p t i o n ( s , a , ' nlc . h i s t u n i t s ' , 2 ) ;
36 % Parameters to adjus t
37 a p m _ o p t i o n ( s , a , 'km. s t at us ' , 1 ) ;
38 a p m _ o p t i o n ( s , a , 'km. lower ' , 3 ) ;
39 a p m _ o p t i o n ( s , a , 'km. upper ' , 20) ;
40 a p m _ o p t i o n ( s , a , 'kb . s t at us ' , 1 ) ;
41 a p m _ o p t i o n ( s , a , 'kb . lower ' ,−2) ;
42 a p m _ o p t i o n ( s , a , 'kb . upper ' , 2 ) ;
43 a p m _ o p t i o n ( s , a , 'gamma [ 1 ] . s t a tu s ' , 1 ) ;
44 a p m _ o p t i o n ( s , a , 'gamma [ 1 ] . lower ' , 0 . 2 ) ;
45 a p m _ o p t i o n ( s , a , 'gamma [ 1 ] . upper ' , 0 . 8 ) ;
46 a p m _ o p t i o n ( s , a , 'gamma [ 2 ] . s t a tu s ' , 1 ) ;
47 a p m _ o p t i o n ( s , a , 'gamma [ 2 ] . lower ' , 0 . 2 ) ;
48 a p m _ o p t i o n ( s , a , 'gamma [ 2 ] . upper ' , 0 . 8 ) ;
49 a p m _ o p t i o n ( s , a , ' c13 . s ta t us ' , 1 ) ;
50 a p m _ o p t i o n ( s , a , ' c13 . lower ' , 0 . 01 ) ;
51 a p m _ o p t i o n ( s , a , ' c13 . upper ' , 0 . 2 ) ;
52 a p m _ o p t i o n ( s , a , ' c24 . s ta t us ' , 1 ) ;
53 a p m _ o p t i o n ( s , a , ' c24 . lower ' , 0 . 01 ) ;
54 a p m _ o p t i o n ( s , a , ' c24 . upper ' , 0 . 2 ) ;
55 % Measured value s
56 a p m _ o p t i o n ( s , a , 'h [ 1 ] . f s t a t u s ' , 1 ) ;
57 a p m _ o p t i o n ( s , a , 'h [ 2 ] . f s t a t u s ' , 1 ) ;
58 % So lve r (1=APOPT, 3=IPOPT)
59 a p m _ o p t i o n ( s , a , ' nlc . s o l v e r ' , 3 ) ;
60 % Solve with APMonitor
61 a p m ( s , a , ' s o lv e ' )
62 % Open web−viewer
63 a p m _ w e b ( s , a ) ;
64 % Retr i eve s o l u t i on
65 s o l u t i o n = a p m _ s o l ( s , a ) ;

Python Dynamic Estimation

# Import APM Package f o r Python
from a p m import ∗

# Server and App l i ca t i on name
s = ' http :// xps . apmonitor . com '

a = ' prbs '

# Clear prev ious app l i c a t i on
a p m ( s , a , ' c l e a r a l l ' )
# Load model and data
a p m _ l o a d ( s , a , '4 tank . apm ' )
c s v _ l o a d ( s , a , ' prbs360 . csv ' )
# Set up va r ia b l e c l a s s i f i c a t i o n s
# Feedforwards
a p m _ i n f o ( s , a , 'FV ' , 'km ' )
a p m _ i n f o ( s , a , 'FV ' , 'kb ' )
a p m _ i n f o ( s , a , 'FV ' , 'gamma [ 1 ] ' )
a p m _ i n f o ( s , a , 'FV ' , 'gamma [ 2 ] ' )
a p m _ i n f o ( s , a , 'FV ' , ' c13 ' )
a p m _ i n f o ( s , a , 'FV ' , ' c24 ' )
# State va r i a b l e s
a p m _ i n f o ( s , a , 'SV ' , 'h [ 3 ] ' )
a p m _ i n f o ( s , a , 'SV ' , 'h [ 4 ] ' )
# Contro l l ed va r i ab l e s
a p m _ i n f o ( s , a , 'CV ' , 'h [ 1 ] ' )
a p m _ i n f o ( s , a , 'CV ' , 'h [ 2 ] ' )
# Dynamic Estimation
a p m _ o p t i o n ( s , a , ' n lc . imode ' , 5 )
# Read csv f i l e
a p m _ o p t i o n ( s , a , ' n lc . c sv read ' , 1 )
# Type (1= l1−norm , 2=Squared Error )
a p m _ o p t i o n ( s , a , ' n lc . ev type ' , 2 )
# Time un i t s (1= sec , 2=min , e tc )
a p m _ o p t i o n ( s , a , ' n lc . c t r l u n i t s ' , 1 )
a p m _ o p t i o n ( s , a , ' n lc . h i s t u n i t s ' , 2 )
# Parameters to adjus t
a p m _ o p t i o n ( s , a , 'km. s ta tu s ' , 1 )
a p m _ o p t i o n ( s , a , 'km. lower ' , 3 )
a p m _ o p t i o n ( s , a , 'km. upper ' , 20)
a p m _ o p t i o n ( s , a , 'kb . s ta tu s ' , 1 )
a p m _ o p t i o n ( s , a , 'kb . lower ' ,−2)
a p m _ o p t i o n ( s , a , 'kb . upper ' , 2 )
a p m _ o p t i o n ( s , a , 'gamma [ 1 ] . s t at us ' , 1 )
a p m _ o p t i o n ( s , a , 'gamma [ 1 ] . lower ' , 0 . 2 )
a p m _ o p t i o n ( s , a , 'gamma [ 1 ] . upper ' , 0 . 8 )
a p m _ o p t i o n ( s , a , 'gamma [ 2 ] . s t at us ' , 1 )
a p m _ o p t i o n ( s , a , 'gamma [ 2 ] . lower ' , 0 . 2 )
a p m _ o p t i o n ( s , a , 'gamma [ 2 ] . upper ' , 0 . 8 )
a p m _ o p t i o n ( s , a , ' c13 . s ta tu s ' , 1 )
a p m _ o p t i o n ( s , a , ' c13 . lower ' , 0 . 01 )
a p m _ o p t i o n ( s , a , ' c13 . upper ' , 0 . 2 )
a p m _ o p t i o n ( s , a , ' c24 . s ta tu s ' , 1 )
a p m _ o p t i o n ( s , a , ' c24 . lower ' , 0 . 01 )
a p m _ o p t i o n ( s , a , ' c24 . upper ' , 0 . 2 )
# Measured values
a p m _ o p t i o n ( s , a , 'h [ 1 ] . f s t a t u s ' , 1 )
a p m _ o p t i o n ( s , a , 'h [ 2 ] . f s t a t u s ' , 1 )
# Solver (1=APOPT, 3=IPOPT)
a p m _ o p t i o n ( s , a , ' n lc . s o l v e r ' , 3 )
# Solve with APMonitor
a p m ( s , a , ' so l ve ' )
# Open web−viewer
a p m _ w e b ( s , a )
# Ret r i eve s o l u t i o n
( y , s o l u t i o n ) = a p m _ s o l ( s , a )

556
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Appendix D. Nonlinear Control of the Quadruple Tank Process557

The Matlab and Python scripts in Listing 4 detail the commands necessary558

to reproduce the nonlinear controller presented in this paper. The model file is559

the same as is shown in Appendix B but updated with new parameters from560

Table 4.561

Listing 4: MATLAB Nonlinear Control

1 a d d p a t h ( 'apm ' ) ;
2 % Clear MATLAB
3 c l e a r a l l ; c l o s e a l l ; c l c
4 % Server and Appl i cat ion Name
5 s = ' http :// xps . apmonitor . com ' ;
6 a = ' nlc ' ;
7 % Clear prev ious app l i ca t i on
8 a p m ( s , a , ' c l e a r a l l ' ) ;
9 % Load model

10 a p m _ l o a d ( s , a , ' 4 tank nlc .apm ' ) ;
11 % Load futu re time hor i zon
12 c s v _ l o a d ( s , a , ' con t r o l . csv ' ) ;
13 % Set up va r i ab l e c l a s s i f i c a t i o n s
14 % Feedforwards
15 a p m _ i n f o ( s , a , 'FV ' , 'gamma [ 1 ] ' ) ;
16 a p m _ i n f o ( s , a , 'FV ' , 'gamma [ 2 ] ' ) ;
17 % Manipulated va r i a b l e s
18 a p m _ i n f o ( s , a , 'MV' , 'v1 ' ) ;
19 a p m _ i n f o ( s , a , 'MV' , 'v2 ' ) ;
20 % State va r i a b l e s
21 a p m _ i n f o ( s , a , 'SV ' , 'h [ 3 ] ' ) ;
22 a p m _ i n f o ( s , a , 'SV ' , 'h [ 4 ] ' ) ;
23 % Cont ro l l ed va r i a b l e s
24 a p m _ i n f o ( s , a , 'CV ' , 'h [ 1 ] ' ) ;
25 a p m _ i n f o ( s , a , 'CV ' , 'h [ 2 ] ' ) ;
26 % Steady s t a t e i n i t i a l i z a t i o n
27 a p m _ o p t i o n ( s , a , ' nlc . imode ' , 3 ) ;
28 a p m ( s , a , ' s o lv e ' ) ;
29 % Dynamic con t ro l
30 a p m _ o p t i o n ( s , a , ' nlc . imode ' , 6 ) ;
31 % In t e r na l nodes
32 a p m _ o p t i o n ( s , a , ' nlc . nodes ' , 3 ) ;
33 % Time uni t s (1= sec , 2=min , et c )
34 a p m _ o p t i o n ( s , a , ' nlc . c t r l u n i t s ' , 1 ) ;
35 a p m _ o p t i o n ( s , a , ' nlc . h i s t u n i t s ' , 2 ) ;
36 % Read csv f i l e
37 a p m _ o p t i o n ( s , a , ' nlc . csv r ead ' , 1 ) ;
38 % Manipulated va r ia b l e tuning
39 a p m _ o p t i o n ( s , a , ' v1 . s t at us ' , 1 ) ;
40 a p m _ o p t i o n ( s , a , ' v1 . upper ' , 6 ) ;
41 a p m _ o p t i o n ( s , a , ' v1 . lower ' , 1 ) ;
42 a p m _ o p t i o n ( s , a , ' v1 . dmax ' , 1 ) ;
43 a p m _ o p t i o n ( s , a , ' v1 . dcos t ' , 1 ) ;
44 a p m _ o p t i o n ( s , a , ' v2 . s t at us ' , 1 ) ;
45 a p m _ o p t i o n ( s , a , ' v2 . upper ' , 6 ) ;
46 a p m _ o p t i o n ( s , a , ' v2 . lower ' , 1 ) ;
47 a p m _ o p t i o n ( s , a , ' v2 . dmax ' , 1 ) ;
48 a p m _ o p t i o n ( s , a , ' v2 . dcos t ' , 1 ) ;
49 % Cont ro l l ed va r ia b l e tuning
50 a p m _ o p t i o n ( s , a , 'h [ 1 ] . s t a tu s ' , 1 ) ;
51 a p m _ o p t i o n ( s , a , 'h [ 1 ] . f s t a t u s ' , 0 ) ;
52 a p m _ o p t i o n ( s , a , 'h [ 1 ] . sph i ' , 1 0 . 1 ) ;
53 a p m _ o p t i o n ( s , a , 'h [ 1 ] . sp lo ' , 9 . 9 ) ;
54 a p m _ o p t i o n ( s , a , 'h [ 1 ] . tau ' , 10) ;
55 a p m _ o p t i o n ( s , a , 'h [ 2 ] . s t a tu s ' , 1 ) ;
56 a p m _ o p t i o n ( s , a , 'h [ 2 ] . f s t a t u s ' , 0 ) ;
57 a p m _ o p t i o n ( s , a , 'h [ 2 ] . sph i ' , 1 5 . 1 ) ;
58 a p m _ o p t i o n ( s , a , 'h [ 2 ] . sp lo ' , 1 4 . 9 ) ;
59 a p m _ o p t i o n ( s , a , 'h [ 2 ] . tau ' , 10) ;
60 % Set c o n t r o l l e r mode
61 a p m _ o p t i o n ( s , a , ' nlc . reqctr lmode ' , 3 ) ;
62 % Run APMonitor
63 a p m ( s , a , ' s o lv e ' )
64 % Open web−viewer
65 a p m _ w e b ( s , a ) ;
66 % Retr i eve s o l u t i on
67 s o l u t i o n = a p m _ s o l ( s , a ) ;

Python Nonlinear Control

from a p m import ∗

# Server and App l i ca t i on Name
s = ' http :// xps . apmonitor . com '

a = ' n lc '

# Clear prev ious app l i c a t i on
a p m ( s , a , ' c l e a r a l l ' )
# load model
a p m _ l o a d ( s , a , '4 tank n lc .apm ' )
# load fu tu re time hor i zon
c s v _ l o a d ( s , a , ' con t ro l . csv ' )
# Set up va r ia b l e c l a s s i f i c a t i o n s
# Feedforwards
a p m _ i n f o ( s , a , 'FV ' , 'gamma [ 1 ] ' )
a p m _ i n f o ( s , a , 'FV ' , 'gamma [ 2 ] ' )
# Manipulated va r i a b l e s
a p m _ i n f o ( s , a , 'MV' , ' v1 ' )
a p m _ i n f o ( s , a , 'MV' , ' v2 ' )
# State va r i a b l e s
a p m _ i n f o ( s , a , 'SV ' , 'h [ 3 ] ' )
a p m _ i n f o ( s , a , 'SV ' , 'h [ 4 ] ' )
# Contro l l ed va r i ab l e s
a p m _ i n f o ( s , a , 'CV ' , 'h [ 1 ] ' )
a p m _ i n f o ( s , a , 'CV ' , 'h [ 2 ] ' )
# Steady s ta t e i n i t i a l i z a t i o n
a p m _ o p t i o n ( s , a , ' n lc . imode ' , 3 )
a p m ( s , a , ' so l ve ' )
# Dynamic con t ro l
a p m _ o p t i o n ( s , a , ' n lc . imode ' , 6 )
# In te rn a l nodes in the c o l l o c a t i o n
a p m _ o p t i o n ( s , a , ' n lc . nodes ' , 3 )
# Time un i t s (1= sec , 2=min , e tc )
a p m _ o p t i o n ( s , a , ' n lc . c t r l u n i t s ' , 1 )
a p m _ o p t i o n ( s , a , ' n lc . h i s t u n i t s ' , 2 )
# Read csv f i l e
a p m _ o p t i o n ( s , a , ' n lc . c sv read ' , 1 )
# Manipulated va r i ab l e tuning
a p m _ o p t i o n ( s , a , 'v1 . s ta tu s ' , 1 )
a p m _ o p t i o n ( s , a , 'v1 . upper ' , 6 )
a p m _ o p t i o n ( s , a , 'v1 . lower ' , 1 )
a p m _ o p t i o n ( s , a , 'v1 . dmax ' , 1 )
a p m _ o p t i o n ( s , a , 'v1 . dcos t ' , 1 )
a p m _ o p t i o n ( s , a , 'v2 . s ta tu s ' , 1 )
a p m _ o p t i o n ( s , a , 'v2 . upper ' , 6 )
a p m _ o p t i o n ( s , a , 'v2 . lower ' , 1 )
a p m _ o p t i o n ( s , a , 'v2 . dmax ' , 1 )
a p m _ o p t i o n ( s , a , 'v2 . dcos t ' , 1 )
# Contro l l ed va r i ab l e tuning
a p m _ o p t i o n ( s , a , 'h [ 1 ] . s t a tu s ' , 1 )
a p m _ o p t i o n ( s , a , 'h [ 1 ] . f s t a t u s ' , 0 )
a p m _ o p t i o n ( s , a , 'h [ 1 ] . sph i ' , 1 0 .1 )
a p m _ o p t i o n ( s , a , 'h [ 1 ] . sp lo ' , 9 . 9 )
a p m _ o p t i o n ( s , a , 'h [ 1 ] . tau ' , 10)
a p m _ o p t i o n ( s , a , 'h [ 2 ] . s t a tu s ' , 1 )
a p m _ o p t i o n ( s , a , 'h [ 2 ] . f s t a t u s ' , 0 )
a p m _ o p t i o n ( s , a , 'h [ 2 ] . sph i ' , 1 5 .1 )
a p m _ o p t i o n ( s , a , 'h [ 2 ] . sp lo ' , 1 4 .9 )
a p m _ o p t i o n ( s , a , 'h [ 2 ] . tau ' , 10)
# Set c o n t r o l l e r mode
a p m _ o p t i o n ( s , a , ' n lc . reqctr lmode ' , 3 )
# Run APMonitor
a p m ( s , a , ' so l ve ' )
# Open web−viewer
a p m _ w e b ( s , a )
# Ret r i eve s o l u t i o n
( y , s o l u t i o n ) = a p m _ s o l ( s , a )

562
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[14] R. Findeisen, F. Allgöwer, L. Biegler, Assessment and future directions of600

nonlinear model predictive control, Springer-Verlag, Berlin, 2007.601

[15] J. Hedengren, APMonitor Modeling Language, URL602

http://APMonitor.com (2014).603

[16] J. Hedengren, APMonitor modeling language for mixed-integer differential604

algebraic systems, in: Computing Society Session on Optimization Mod-605

eling Software: Design and Applications, INFORMS National Meeting,606

Phoenix, AZ, 2012.607

[17] M. Cizniar, D. Salhi, M. Fikar, M. Latifi, A MATLAB package for orthogo-608

nal collocations on finite elements in dynamic optimisation, in: Proceedings609

of the 15th Int. Conference Process Control ’05, Strbske Pleso, Slovakia,610

2005.611

[18] B. Houska, H. J. Ferreau, M. Diehl, ACADO toolkit - An open-source612

framework for automatic control and dynamic optimization, Optimal Con-613

trol Applications and Methods 32 (2011) 298–312.614

[19] P. Piela, A. Westerberg, K. Westerberg, T. Epperly, ASCEND: an object-615

oriented computer environment for modeling and analysis: The modeling616

language, Computers & Chemical Engineering 15 (1991) 53–72.617
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Real-time optimization and nonlinear model predictive control of processes749

governed by differential-algebraic equations, Journal of Process Control 12750

(2002) 577–585.751

31



[64] E. Haseltine, J. Rawlings, Critical evaluation of extended kalman filtering752

and moving-horizon estimation, Ind. Eng. Chem. Res. 44 (8) (2005) 2451–753

2460.754

[65] B. Odelson, M. Rajamani, J. Rawlings, A new autocovariance least-squares755

method for estimating noise covariances, Automatica 42 (2) (2006) 303–308.756

[66] J. Hedengren, T. Edgar, Moving horizon estimation - the explicit solution,757

in: Proceedings of Chemical Process Control (CPC) VII Conference, Lake758

Louise, Alberta, Canada, 2006.759

[67] B. Spivey, J. Hedengren, T. Edgar, Monitoring of process fouling using760

first-principles modeling and moving horizon estimation, in: Proc. Texas,761

Wisconsin, California Control Consortium (TWCCC), Austin, TX, 2009.762

[68] M. Darby, M. Nikolaou, J. Jones, D. Nicholson, RTO: An overview and763

assessment of current practice, Journal of Process Control 21 (2011) 874–764

884.765

[69] G. Carey, B. Finlayson, Othogonal collocation on finite elements, Chemical766

Engineering Science 30 (1975) 587–596.767

[70] J. S. Albuquerque, L. T. Biegler, Decomposition algorithms for on-line768

estimation with nonlinear models, Computers & Chemical Engineering 19769

(1995) 1031–1039.770

[71] K. Johansson, Interaction bounds in multivariable control systems, Auto-771

matica 38 (6) (2002) 1045–1051.772

[72] T. Raff, S. Huber, Z. K. Nagy, F. Allgöwer, Nonlinear model predictive con-773
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