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Abstract Text:
Objectives

Model identification for advanced process control (APC) applications including model predictive control (MPC)
and soft-sensor (or inferential) is one of the most time-consuming steps which requires dedicated plant tests
and the skills of a highly experienced chemical engineering control engineer. The empirical models (such as
first-order plus dead time, or FOPDT) need to be validated by judging the model attributes such as the gain
value or sign, the dead time, and the shape of the step response based on prior process knowledge [1]. Plant
tests must be repeated when the model identification does not match with the prior process knowledge.

To reduce the effort and cost of the model identification, this study proposes a simultaneous model fitting
method which incorporates a priori information as constraints of the optimization problem. This approach can
be applied to both linear empirical models and non-linear first principles models using the GEKKO
optimization suite which specializes in dynamic optimization problems including nonlinear programming
(NLP), differential algebraic equations (DAE), and artificial neural networks (ANN) [2].

Case studies and discussions

Two model identification examples are considered in this study. One is developing the inferential model for a
soft-sensor in a distillation column. The other is a horizontal tank with a level control loop. Soft sensors play a
critical role in estimating product quality (i.e. composition) in a real-time manner, especially in the chemical
processing industry. They infer the product quality in the distillation column based on measurable column
operating variables, such as tray temperature and pressure. The low frequency and time delay of on-line
analyzers and lab sample results are not suitable for the real-time control applications. In the inferential fitting
case, the industrial distillation column operation data is used to estimate the model parameters of the
inferential model. The model is structured with three different blocks in series: the pressure compensated
temperature (PCT) block, the FOPDT block, and the static nonlinearity block. For the nonlinearity block, a
piecewise linear (PWL) function and an ANN are used and compared with a real-world result that uses a
simple log transformation. Introducing the PWL and ANN as a nonlinear static gain block describes the
nonlinearity of the process more accurately in an extended range of operation, which is difficult to achieve
with a simple logarithm transformation.

In the tank example, instead of having a chain of model blocks, a nonlinear physics-based model is
considered. The model is designed to accurately describe the nonlinear character of a horizontal tank with
spherical caps. It has an inlet and an outlet flow with a PID level control loop configured on the outlet flow. The
physics-based model consists of material balance equations combined with the tank geometry. The unknown
parameters (such as the tank geometry) in the nonlinear model are estimated using the closed-loop operation
data with the level controller.

Conclusions

In the inferential model fitting example, we investigate the hybrid approaches including piecewise linear and
artificial neural net embedded into the simultaneous model fitting platform. The simultaneous model fitting by
specifying constraints in a single optimization running reduces the extra effort to validate the model manually
with a priori information and to manually sort out the appropriate segment of the historical operation data for
each block. In the tank model example, the physics-based model is used to identify the unknown parameters
using the available operation data. The identified physics-based model can then be used as a priori constraint
in the simultaneous dynamic estimation problems in an empirical model fitting which is the most common type
of advanced process control system. The benefit of this example is to improve the accuracy of the empirical
linear model fitting and reduce the amount of time and effort by imposing the nonlinear constraint from the
physics-based model as a priori information.
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