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CHAPTER 1 

INTRODUCTION TO OPTIMIZATION-BASED DESIGN 

1. What is Optimization? 

Engineering is a profession whereby principles of nature are applied to build useful objects. 
A mechanical engineer designs a new engine, or a car suspension or a robot. A civil engineer 
designs a bridge or a building. A chemical engineer designs a distillation tower or a chemical 
process. An electrical engineer designs a computer or an integrated circuit. 
 
For many reasons, not the least of which is the competitive marketplace, an engineer might 
not only be interested in a design which works at some sort of nominal level, but is the best 
design in some way. The process of determining the best design is called optimization. Thus 
we may wish to design the smallest heat exchanger that accomplishes the desired heat 
transfer, or we may wish to design the lowest-cost bridge for the site, or we may wish to 
maximize the load a robot can lift.  
 
Often engineering optimization is done implicitly. Using a combination of judgment, 
experience, modeling, opinions of others, etc. the engineer makes design decisions which, he 
or she hopes, lead to an optimal design. Some engineers are very good at this. However, if 
there are many variables to be adjusted with several conflicting objectives and/or constraints, 
this type of experience-based optimization can fall short of identifying the optimum design. 
The interactions are too complex and the variables too numerous to intuitively determine the 
optimum design. 
 
In this text we discuss a computer-based approach to design optimization. With this 
approach, we use the computer to search for the best design according to criteria that we 
specify. The computer’s enormous processing power allows us to evaluate many more design 
combinations than we could do manually. Further, we employ sophisticated algorithms that 
enable the computer to efficiently search for the optimum. Often we start the algorithms from 
the best design we have based on experience and intuition. We can then see if any 
improvement can be made. 
 
In order to employ this type of optimization, several qualifications must be met. First, we 
must have a quantitative model available to compute the responses of interest. If we wish to 
maximize heat transfer, we must be able to calculate heat transfer for different design 
configurations. If we wish to minimize cost, we must be able to calculate cost. Sometimes 
obtaining such quantitative models is not easy. Obtaining a valid, accurate model of the 
design problem is the most important step in optimization. It is not uncommon for 90% of the 
effort in optimizing a design to be spent on developing and validating the quantitative model. 
Once a good model is obtained, optimization results can often be realized quickly. 
 
Fortunately, in engineering we often do have good, predictive models (or at least partial 
models) for a design problem. For example, we have models to predict the heat transfer or 
pressure drop in an exchanger. We have models to predict stresses and deflections in a 
bridge. Although engineering models are usually physical in nature (based on physical 
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principles), we can also use empirical models (based on the results of experiments). It is also 
perfectly acceptable for models to be solved numerically (using, for example, the finite 
element method).  
 
Besides a model, we must have some variables which are free to be adjusted—whose values 
can be set, within reason, by the designer. We will refer to these variables as design 
variables. In the case of a heat exchanger, the design variables might be the number of tubes, 
number of shells, the tube diameters, tube lengths, etc. Sometimes we also refer to the 
number of design variables as the degrees of freedom of the computer model. 
 
The freedom we have to change the design variables leads to the concept of design space. If 
we have four design variables, then we have a four dimensional design space we can search 
to find the best design. Although humans typically have difficulty comprehending spaces 
which are more than three dimensional, computers have no problem searching higher order 
spaces. In some cases, problems with thousands of variables have been solved. 
 
Besides design variables, we must also have criteria we wish to optimize. These criteria take 
two forms: objectives and constraints. Objectives represent goals we wish to maximize or 
minimize. Constraints represent limits we must stay within, if inequality constraints, or, in 
the case of equality constraints, target values we must satisfy. Collectively we call the 
objectives and constraints design functions.   
 
Once we have developed a good computer-based analysis model, we must link the model to 
optimization software. Optimization methods are somewhat generic in nature in that many 
methods work for wide variety of problems. After the connection has been made such that 
the optimization software can “talk” to the engineering model, we specify the set of design 
variables and objectives and constraints. Optimization can then begin; the optimization 
software will call the model many times (sometimes thousands of times) as it searches for an 
optimum design. 
 
Usually we are not satisfied with just one optimum—rather we wish to explore the design 
space. We often do this by changing the set of design variables and design functions and re-
optimizing to see how the design changes. Instead of minimizing weight, for example, with a 
constraint on stress, we may wish to minimize stress with a constraint on weight. By 
exploring in this fashion, we can gain insight into the trade-offs and interactions that govern 
the design problem. 
 
In summary, computer-based optimization refers to using computer algorithms to search the 
design space of a computer model. The design variables are adjusted by an algorithm in order 
to achieve objectives and satisfy constraints. Many of these concepts will be explained in 
further detail in the following sections. 
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2. Engineering Models in Optimization 

2.1. Analysis Variables and Functions 

As mentioned, engineering models play a key role in engineering optimization. In this 
section we will discuss some further aspects of engineering models. We refer to engineering 
models as analysis models. 
 
In a very general sense, analysis models can be viewed as shown in Fig 1.1 below. A model 
requires some inputs in order to make calculations. These inputs are called analysis 
variables. Analysis variables include design variables (the variables we can change) plus 
other quantities such as material properties, boundary conditions, etc. which typically would 
not be design variables. When all values for all the analysis variables have been set, the 
analysis model can be evaluated.  The analysis model computes outputs called analysis 
functions. These functions represent what we need to determine the “goodness” of a design. 
For example, analysis functions might be stresses, deflections, cost, efficiency, heat transfer, 
pressure drop, etc. It is from the analysis functions that we will select the design functions, 
i.e., the objectives and constraints. 
 

 
Fig. 1.1. The operation of analysis models 

 
Thus from a very general viewpoint, analysis models require inputs—analysis variables—
and compute outputs—analysis functions. Essentially all analysis models can be viewed this 
way. 
 

2.2. An Example—the Two-bar Truss 

At this point an example will be helpful.  
 
Consider the design of a simple tubular symmetric truss shown in Fig. 1.2 below (problem 
originally from Fox1).  A design of the truss is specified by a unique set of values for the 
analysis variables: height (H), diameter, (d), thickness (t), separation distance (B), modulus 

                                                 
1 R.L. Fox, Optimization Methods in Engineering Design, Addison Wesley, 1971 
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of elasticity (E), and material density (). Suppose we are interested in designing a truss that 
has a minimum weight, will not yield, will not buckle, and does not deflect "excessively,” 
and so we decide our model should calculate weight, stress, buckling stress and deflection—
these are the analysis functions. 
 
 

Fig. 1.2 -  Layout for the Two-bar truss model. 

 
In this case we can develop a model of the truss using explicit mathematical equations. These 
equations are: 
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equations give above. When all of these are given specific values, we can evaluate the 
model, which refers to calculating the functions. 
 
 

Table 1.1 - Analysis variables and analysis functions for the Two-bar 
truss. 

Analysis Variables Analysis Functions 

B, H, t, d, P, E,  Weight,  Stress,   
Buckling Stress,   

Deflection 
 

 
An example design for the truss is given as, 
Analysis Variables Value 
Height, H (in) 30. 
Diameter, d (in) 3. 
Thickness, t (in) 0.15 
Separation distance, B (inches) 60. 
Modulus of elasticity ( 1000 lbs/in2) 30,000 
Density,  (lbs/in3) 0.3 
Load (1000 lbs) 66 
  
Analysis Functions Value 
Weight (lbs) 35.98 
Stress (ksi) 33.01 
Buckling stress (ksi) 185.5 
Deflection (in) 0.066 
 
We can obtain a new design for the truss by changing one or all of the analysis variable 
values. For example, if we change thickness from 0.15 in to 0.10 in., we find that weight has 
decreased, but stress and deflection have increased, as given below, 
 
Analysis Variables Value 
Height, H (in) 30. 
Diameter, d (in) 3. 
Thickness, t (in) 0.1 
Separation distance, B (inches) 60. 
Modulus of elasticity ( 1000 lbs/in2) 30,000 
Density,  (lbs/in3) 0.3 
Load (1000 lbs) 66 
  
Analysis Functions Value 
Weight (lbs) 23.99 
Stress (psi) 49.52 
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Buckling stress (psi) 185.3 
Deflection (in) 0.099 

3. Models and Optimization by Trial-and-Error 

As discussed in the previous section, the “job,” so to speak, of the analysis model is to 
compute the values of analysis functions. The designer specifies values for analysis 
variables, and the model computes the corresponding functions. 
 
Note that the analysis software does not make any kind of “judgment” regarding the 
goodness of the design. If an engineer is designing a bridge, for example, and has software to 
predict stresses and deflections, the analysis software merely reports those values—it does 
not suggest how to change the bridge design to reduce stresses in a particular location. 
Determining how to improve the design is the job of the designer. 
 
To improve the design, the designer will often use the model in an iterative fashion, as shown 
in Fig. 1.3 below. The designer specifies a set of inputs, evaluates the model, and examines 
the outputs. Suppose, in some respect, the outputs are not satisfactory. Using intuition and 
experience, the designer proposes a new set of inputs which he or she feels will result in a 
better set of outputs. The model is evaluated again. This process may be repeated many 
times. 
 

 
Fig. 1.3. Common “trial-and-error” iterative design process. 

 
We refer to this process as “optimization by design trial-and-error.” This is the way most 
analysis software is used. Often the design process ends when time and/or money run out. 
 
Note the mismatch of technology in Fig 1.3. On the right hand side, the model may be 
evaluated with sophisticated software and the latest high-speed computers. On the left hand 
side, design decisions are made by trial-and-error. The analysis is high tech; the decision 
making is low tech. 
 

4. Optimization with Computer Algorithms 

Computer-based optimization is an attempt to bring some high-tech help to the decision 
making side of Fig. 1.3. With this approach, the designer is taken out of the trial-and-error 
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loop. The computer is now used to both evaluate the model and search for a better design. 
This process is illustrated in Fig. 1.4.  
 
 

 
Fig. 1.4. Moving the designer out of the trial-and-error loop with computer-based 
optimization software. 

 
The designer now operates at a higher level. Instead of adjusting variables and interpreting 
function values, the designer is specifying goals for the design problem and interpreting 
optimization results. The design space can be much more completely explored. Usually a 
better design can be found in a shorter time. 

5. Specifying an Optimization Problem 

5.1. Variables, Objectives, Constraints 

Optimization problems are often specified using a particular form. That form is shown in Fig. 
1.5. First the design variables are listed. Then the objectives are given, and finally the 
constraints are given. The abbreviation “s.t.” stands for “subject to.” 
 
    Find   height and diameter  to: 
 
     Minimize Weight 
 
    s. t. 
     Stress ≤ 100 
     (Stress-Buckling Stress) ≤ 0 
     Deflection ≤ 0.25 

 
Fig. 1.5 Example specification of optimization problem for the Two-bar truss 

 
Note that to define the buckling constraint, we have combined two analysis functions 
together.  Thus we have mapped two analysis functions to become one design function. 
 
We can specify several optimization problems using the same analysis model.  For example, 
we can define a different optimization problem for the Two-bar truss to be: 
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Find   thickness and diameter  to: 
 

     Minimize Stress 
 
    s.t. 
     Weight ≤ 25.0 
     Deflection ≤ 0.25 
 

Fig. 1.6 A second specification of an optimization problem for the Two-bar truss 
 
 
The specifying of the optimization problem, i.e. the selection of the design variables and 
functions, is referred to as the mapping between the analysis space and the design space.  For 
the problem defined in Fig. 1.5 above, the mapping looks like: 
 

 
Fig. 1.7- Mapping Analysis Space to Design Space for the Two-bar Truss. 

  
We see from Fig. 1.7 that the design variables are a subset of the analysis variables. This is 
always the case. In the truss example, it would never make sense to make load a design 
variable—otherwise the optimization software would just drive the load to zero, in which 
case the need for a truss disappears! Also, density and modulus would not be design 
variables unless the material we could use for the truss could change. In that case, the values 
these two variables could assume would be linked (the modulus for material A could only be 
matched with the density for material A) and would also be discrete. The solution of discrete 
variable optimization problems is discussed in Chapters 4 and 5. At this point, we will 
assume all design variables are continuous. 
 
In like manner, the design functions are a subset of the analysis functions. In this example, 
all of the analysis functions appear in the design functions. However, sometimes analysis 
functions are computed which are helpful in understanding the design problem but which do 

Design VariablesAnalysis Variables 

Design Space Analysis Space 

Deflection ≤ 0.25 inches  Deflection 

(Stress – Buckling Stress) ≤ 0 Buckling Stress 

Stress ≤ 100 ksi Stress 

Minimize  Weight 

Design Functions Analysis Functions 
 
Load 

Modulus 

Density 

 Width 

Thickness 

Diameter Diameter 

Height Height 
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not become objectives or constraints. Note that the analysis function “stress” appears in two 
design functions. Thus it is possible for one analysis function to appear in two design 
functions. 
 
In the examples given above, we only have one objective. This is the most common form of 
an optimization problem. It is possible to have multiple objectives. However, usually we are 
limited to a maximum of two or three objectives. This is because objectives usually are 
conflicting (one gets worse as another gets better) and if we specify too many, the algorithms 
can’t move. The solution of multiple objective problems is discussed in more detail in 
Chapter 5. 
 
We also note that all of the constraints in the example are “less-than” inequality constraints. 
The limits to the constraints are appropriately called the allowable values or right hand sides. 
For an optimum to be valid, all constraints must be satisfied. In this case, stress must be less 
than or equal to 100; stress minus buckling stress must be less than or equal to 0, and 
deflection must be less than or equal to 0.25. 
 
Most engineering constraints are inequality constraints. Besides less-than (≤) constraints, we 
can have greater-than (≥) constraints. Any less-than constraint can be converted to a greater-
than constraint or vice versa by multiplying both sides of the equation by -1. It is possible in 
a problem to have dozens, hundreds or even thousands of inequality constraints. When an 
inequality constraint is equal to its right hand side value, it is said to be active or binding. 
 
Besides inequality constraints, we can also have equality constraints. Equality constraints 
specify that the function value should equal the right hand side. Because equality constraints 
severely restrict the design space (each equality constraint absorbs one degree of freedom), 
they should be used carefully.  
 

5.2. Example: Specifying the Optimization Set-up of a Steam Condenser 

It takes some experience to be able to take the description of a design problem and abstract 
out of it the underlying optimization problem.  In this example, a design problem for a steam 
condenser is given. Can you identify the appropriate analysis/design variables? Can you 
identify the appropriate analysis/design functions? 
 
Description:  
Fig. 1.8 below shows a steam condenser.  The designer needs to design a condenser that will 
cost a minimum amount and condense a specified amount of steam, mmin.  Steam flow rate, 
ms, steam condition, x, water temperature, Tw, water pressure Pw, and materials are 
specified.  Variables under the designer’s control include the outside diameter of the shell, D; 
tube wall thickness, t; length of tubes, L; number of passes, N; number of tubes per pass, n; 
water flow rate, mw; baffle spacing, B, tube diameter, d. The model calculates the actual 
steam condensed, mcond, the corrosion potential, CP, condenser pressure drop, Pcond, cost, 
Ccond, and overall size, Vcond. The overall size must be less than Vmax and the designer would 
like to limit overall pressure drop to be less than Pmax 
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Discussion: 
This problem description is somewhat typical of many design problems, in that we have to 
infer some aspects of the problem. The wording, “Steam flow rate, ms, steam condition, x, 
water temperature, Tw, water pressure Pw, and materials are specified,” indicates these are 
either analysis variables that are not design variables (“unmapped analysis variables”) or 
constraint right hand sides. The key words, “Variables under the designer’s control…” 
indicate that what follows are design variables.  
 
Statements such as “The model calculates…” and “The designer would also like to limit” 
indicate analysis or design functions. The phrase, “The overall size must be less than…” 
clearly indicates a constraint.  

 
 

Fig. 1.8. Schematic of steam condenser. 
 

Thus from this description it appears we have the following, 
 
Analysis Variables: 
Outside diameter of the shell, D 
Tube wall thickness, t 
Length of tubes, L 
Number of passes, N 
Number of tubes per pass, n 
Water flow rate, mw 
Baffle spacing, B,  
Tube diameter, d 
Steam flow rate, ms  
Steam condition, x  
Water temperature, Tw  
Water pressure, Pw 
Material properties  
 

Design Variables: 
Outside diameter of the shell, D 
Tube wall thickness, t 
Length of tubes, L 
Number of passes, N 
Number of tubes per pass, n 
Water flow rate, mw 
Baffle spacing, B,  
Tube diameter, d. 

Analysis Functions: 
Cost, Ccond 
Overall size, Vcond 
Steam condensed, mcond 
Condenser pressure drop, Pcond 

corrosion potential, CP 

Design Functions: 
Minimize Cost 
s.t. 
Vcond ≤ Vmax 
mcond  ≥ mmin 
Pcond ≤ Pmax 
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6. Concepts of Design Space 

So far we have discussed the role of analysis software within optimization. We have 
mentioned that the first step in optimizing a problem is getting a good analysis model. We 
have also discussed the second step: setting up the design problem. Once we have defined the 
optimization problem, we are ready to start searching the design space. In this section we 
will discuss some concepts of design space. We will do this in terms of the familiar truss 
example. 
 
For our truss problem, we defined the design variables to be height and diameter. In Fig. 1.9 
we show a contour plot of the design space for these two variables. The plot is based on data 
created by meshing the space with a grid of values for height and diameter; other analysis 
variables were fixed at values shown in the legend on the left. The solid lines (without the 
triangular markers) represent contours of weight, the objective. We can see that many 
combinations of height and diameter result in the same weight. We can also see that weight 
decreases as we move from the upper right corner of the design space towards the lower left 
corner. 
 
Constraint boundaries are also shown on the plot, marked 1-3. These boundaries are also 
contour lines—the constraint boundary is the contour of the function which is equal to the 
allowable value. The small triangular markers show the feasible side of the constraint. The 
space where all constraints are feasible is called the feasible space. The feasible space for 
this example is shown in Fig. 1.9.  By definition, an optimum lies in the feasible space. 
 

 
Fig. 1.9. Contour plot showing the design space for the Two-bar Truss. 

 

Feasible 
Space 
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We can easily see from the contours and the constraint boundaries that the optimum to this 
problem lies at the intersection of the buckling constraint and deflection constraint.  We say 
that these are binding (or active) constraints. Several other aspects of this optimum should be 
noted.  
 
First, this is a constrained optimum, since it lies on the constraint boundaries of buckling and 
deflection. These constraints are binding or active. If we relaxed the allowable value for 
these constraints, the optimum would improve. If we relaxed either of these constraints 
enough, stress would become a binding constraint.  
 
It is possible to have an unconstrained optimum when we are optimizing, although not for 
this problem. Assuming we are minimizing, the contours for such an optimum would look 
like a valley. Contour plots showing unconstrained optimums are given in Fig. 1.10 
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 Fig. 1.10 Contour plots which show unconstrained optimums 
 

 
Fig. 1.11. Surface plot of the function: 
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Second, this optimum is a local optimum. A local optimum is a point which has the best 
objective value of any feasible point in its neighborhood. We can see that no other near-by 
feasible point has a better value than this optimum. 
 
Finally, this is also a global optimum. A global optimum is the best value over the entire 
design space. Obviously, a global optimum is also a local optimum. However, if we have 
several local optimums, the global optimum is the best of these. 
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It is not always easy to tell whether we have a global optimum. Most optimization algorithms 
only guarantee finding a local optimum. In the example of the truss we can tell the optimum 
is global because, with only two variables, we can graph the entire space, and we can see that 
this is the only optimum in this space. If we have more than two variables, however, it is 
difficult to graph the design space (and even if we could, it might be too expensive to do so) 
so we don’t always know for certain that a particular optimum is global. Often, to try to 
determine if a particular solution is a global optimum, we start the optimization algorithms 
from several different design points. If the algorithms always converge to the same spot, we 
have some confidence that point is a global optimum.  
 

7. How Algorithms Work 

The most powerful optimization algorithms for nonlinear continuous problems use 
derivatives to determine a search direction in n dimensional space that improves the 
objective and satisfies the constraints.  Usually these derivatives are obtained numerically. 
For the Two-bar truss, search paths for two different starting points are given in Fig. 1.11 
 
Assuming derivatives are obtained numerically, the number of times the algorithms must 
evaluate the model is roughly 10-15 times the number of optimization variables.  Thus a 
problem with 3 variables will require roughly 30-45 evaluations of the model; a problem 
with 10 variables will require 100-150 model evaluations. 
 

 
Fig. 1.12. Two paths algorithms might follow for two different starting points. 

Starting 
Point 1 

Starting 
Point 2
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8. Cautions Regarding Optimization 

Optimization algorithms can powerfully assist the designer in quantitative design synthesis.  
However, 
 
1. The designer should always carefully and thoroughly validate the engineering model.  

Optimization of an inaccurate model is modestly illuminating at best and misleading and 
a waste of time at worst.  Often optimization algorithms will exploit weaknesses in the 
model if they exist.  As an example, regarding thermal systems, you can get some very 
high performance designs if a model does not enforce the second law of 
thermodynamics!  

 
2. The algorithms help a designer optimize a particular design concept.  At no point will the 

algorithms suggest that a different concept would be more appropriate.  Achieving an 
overall optimum is dependent upon selection of the best concept as well as quantitative 
optimization. 

 
3. Most engineering designs represent a compromise among conflicting objectives.  Usually 

the designer will want to explore a number of alternative problem definitions to obtain 
insight and understanding into the design space.  Sometimes non-quantitative 
considerations will drive the design in important ways. 

 
4. We need to make sure the optimization problem represents the real problem we need to 

solve. Fox makes an important statement along these lines, 
 

“In engineering design we often feel that the objective functions are self evident.  But 
there are pitfalls.  Care must be taken to optimize with respect to the objective 
function which most nearly reflects the true goals of the design problem.  Some 
examples of common errors....should help focus this point.  In static structures, the 
fully utilized (fully stressed) design is not always the lightest weight; the lightest 
weight design is not always the cheapest; in mechanisms, the design with optimum 
transmission angle does not necessarily have the lowest force levels; minimization of 
acceleration level at the expense of jerk (third derivative) may result in inadequate 
dynamic response.” 

 
5.  We need to be careful to optimize the system and not just individual parts. As an 

example, the following poem by Oliver Wendell Holmes describes a “one horse” shay (a 
wagon) so well built that it lasted 100 years, after which it went completely to pieces all 
at once. 

But the Deacon swore (as Deacons do), 
With an “I dew vum,” or an “I tell yeou,” 
He would build one shay to beat the taown 
‘N’ the keountry ‘n’ all the kentry raoun’; 
It should be so built that it couldn’ break daown: 
--”Fur,” said the Deacon, “‘t’s mighty plain 
Thut the weakes’ place mus’ stan’ the strain; 
‘N’ the way t’ fix it, uz I maintain, 
Is only jest  
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T’ make that place uz strong uz the rest.” 
.... 
You see, of course, if you’re not a dunce, 
How it went to pieces all at once,-- 
All at once, and nothing first,-- 
Just as bubbles do when they burst. 
End of the wonderful one-hoss shay. 
Logic is logic.  That’s all I say. 

 
Almost always in optimization we must take a system view, rather than an individual 
component view. 


