Optimization: Maximize the Volume of a Box

A piece of cardboard with a total area of 0.8m’ is to be made
into an open-top box by first removing the corners and then by
folding the box sides up and securing the tabs to the adjacent
box side. The starting cardboard sheet has height h and width
w. When cut and folded, the box has a width of w-2x, a length
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of h-2x, and a height of x. In order to properly secure the tabs to
the adjacent box side, the width of the tab must be 5 |h
centimeters (0.05m). The objective is to maximize the volume

of the box by choosing an appropriate value of x (the height of
the box) and w (the starting width of the cardboard sheet). :

1. Develop an expression for the volume of the box as a function
of x and w only. Hint: The height h and width w are

related by the total area.

2. Determine the optimal volume of the box. Differentiate the objective with respect to x and w and set

each equation equal to zero. Solve the resulting two equations for optimal values of x and w. Remember
—b+Vb2-4ac

that for ax? + bx + ¢ = 0 the solution is the quadratic formula x = o



3. Show the first iteration of the steepest descent method starting from w=1.0m and x=0.1m and
alpha=0.2. Do not normalize the search vector. Plot the starting and first iteration point on the contour

plot. Remember that (maximize Volume) = (minimize -Volume).
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4. What influence do the side tab constraints have on the optimal solution?



Solution Key

1. V=0.8*x—=2*x"N2*w—2*x"2 * 0.8/ w+4*x"3
2. dV/dw =-2*x"2 + 1.6 * x"2 / wh2
dV/dx=0.8 —4*x*w-3.2 *x/w+ 12 * x"2
Solving the first equation gives:
2¥xM2+1.6 ¥ xM2 /wh2=0
Multiply by w2 and divide by x/2
2*wr2+16=0
wh2=-16/-2.0
w = sqrt(1.6/2.0) = 0.8944
Using the second equation to calculate:
0.8*0.89 — 4*x*0.8972 - 3.2*x + 12*x*2*0.89=0
0.7155-6.4*x + 10.68*x"2 =0
x = (-b + sqrt(b”*2-4*a*c))/2*a = 0.45 (Infeasible)
x = (-b - sqrt(b"2-4*a*c))/2*a = 0.1487 (Optimal)
3. Steepest descent

w =1.0m x=0.1m objective function f = minimize (-V)
Gradients

df/dw = -(-2*x72 + 1.6 * x*2 /w”2) =2 *0.01-1.6 *0.01 /1 =0.02-0.016 = +0.004

df/dx =-(0.8 —4*x*w-3.2 *x /w+ 12 * xA2) =-0.8 +4*0.1 + 3.2*%0.1- 12 * 0.01
=-0.8+04+0.32-0.12=-0.2

x1 =x0 + alpha * (-grad(x0)) = [1, 0.1] - 0.2 * [0.004, -0.2] = [1-0.0008, 0.1+0.04] = [0.9992, 0.14]

4. No active constraints at the solution although the width / 2 > x + tab does keep the solution away from a
possible second solution that would create a tall box (negative lengths).
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Zoomed In to Show lterations of 4 methods: Newton’s, Quasi-Newton (BFGS), CG, and Steepest Descent
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