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Practical Control 

1. Fundamental Principles of Process Control 
 
1.1  Motivation for Automatic Process Control 
 
Safety First 
Automatic control systems enable a process to be operated in a safe and profitable manner. They 
achieve this by continually measuring process operating parameters such as temperatures, pressures, 
levels, flows and concentrations, and then making decisions to, for example, open valves, slow down 
pumps and turn up heaters so that selected process measurements are maintained at desired values. 
  The overriding motivation for modern control systems is safety, which encompasses the 
safety of people, the environment and equipment. The safety of plant personal and people in the 
community is the highest priority in any plant operation. The design of a process and associated 
control system must always make human safety the prime objective. 

The tradeoff between safety of the environment and safety of equipment is considered on a 
case by case basis. At the extremes, a nuclear power plant will be operated to permit as much as the 
entire plant to be ruined rather than allowing significant radiation to be leaked to the environment. On 
the other hand, a fossil fuel power plant may be operated to permit an occasional cloud of smoke to 
be released to the environment rather than permitting damage to a multimillion dollar process unit. 
Whatever the priorities for a particular plant, safety of both the environment and the equipment must 
be specifically addressed when defining control objectives.  
 
The Profit Motive 
When people, the environment and plant equipment are properly protected, control objectives can 
focus on the profit motive. Automatic control systems offer strong benefits in this regard. Plant-wide 
control objectives motivated by profit include meeting final product specifications, minimizing waste 
production, minimizing environmental impact, minimizing energy use and maximizing overall 
production rate.  
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Figure 1.1 - Process variability from poor control means lost profits 
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Product specifications set by the marketplace (your customers) are an essential priority if 
deviating from these specifications lessens a product's market value. Example product specifications 
range from maximum or minimum values for density, viscosity or component concentration, to 
specifications on thickness or even color.  

A common control challenge is to operate close to the minimum or maximum of a product 
specification, such as a minimum thickness or a maximum impurities concentration. It takes more raw 
material to make a product thicker than the minimum specification. Consequently, the closer an 
operation can come to the minimum permitted thickness constraint without going under, the greater 
the profit. It takes more processing effort to remove impurities, so the closer an operation can come to 
the maximum permitted impurities constraint without going over, the greater the profit. 
 All of these plant-wide objectives ultimately translate into operating the individual process 
units within the plant as close as possible to predetermined values of temperature, pressure, level, 
flow, concentration or other of the host of possible measured process variables. As shown in Fig. 1.1, 
a poorly controlled process can exhibit large variability in a process measurement over time. To 
ensure a constraint limit is not exceeded, the baseline (set point) operation of the process must be set 
far from the constraint, thus sacrificing profit. 
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Figure 1.2 - Well controlled process has less variability in process measurements 

 

 Figure 1.2 shows that a well controlled process will have much less variability in the 
measured process variable. The result is improved profitability because the process can be operated 
closer to the operating constraint. 

Automatic Process Control 
Because implementation of plant-wide objectives translates into controlling a host of individual 
process parameters within the plant, the remainder for this text focuses on proven methods for the 
automatic control of individual process variables. Examples used to illustrate concepts are drawn 
from the Loop Pro® software package.  
 The Case Studies module presents industrially relevant process control challenges including 
level control in a tank, temperature control of a heat exchanger, purity control of a distillation column 
and concentration control of a jacketed reactor. These real-world challenges will provide hands-on 
experience as you explore and learn the concepts of process dynamics and automatic process control 
presented in the remainder of this book. 
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1.2  Terminology of Control 
The first step in learning automatic process control is to learn the jargon. We introduce some basic 
jargon here by discussing a control system for heating a home as illustrated in Fig. 1.3. This is a 
rather simple automatic control example because a home furnace can only be either on or off.  
 As we will explore later, the challenges of control system design increase greatly when 
process variable adjustments can assume a complete range of values between full on and full off. In 
any event, a home heating system is easily understood and thus provides a convenient platform for 
introducing the relevant terminology. 

The control objective for the process illustrated in Fig. 1.3 is to keep the measured process 
variable (house temperature) at the set point value (the desired temperature set on the thermostat by 
the home owner) in spite of unmeasured disturbances (heat loss from doors and windows opening; 
heat being transmitted through the walls of the house).  

To achieve this control objective, the measured process variable is compared to the 
thermostat set point. The difference between the two is the controller error, which is used in a 
computation by the controller to compute a controller output adjustment (an electrical or pneumatic 
signal).  
 

furnace

temperature
sensor/transmitter

fuel flow

set point

heat loss
(disturbance)

thermostat
controller

valve

TTTC

control
signal

 
 

Figure 1.3 - Home heating control system 
 

The change in the controller output signal causes a response in the final control element (fuel 
flow valve), which subsequently causes a change in the manipulated process variable (flow of fuel to 
the furnace). If the manipulated process variable is moved in the right direction and by the right 
amount, the measured process variable will be maintained at set point, thus satisfying the control 
objective. This example, like all in process control, involves a measurement, computation and action: 

 
    Measurement            Computation             Action 
 
   house temperature, THouse        is it colder than set point ( TSetpoint − THouse > 0 )?      open fuel valve 
 
                           is it hotter than set point ( TSetpoint − THouse < 0 )?       close fuel valve 
 
Note that computing the necessary controller action is based on controller error, or the difference 
between the set point and the measured process variable. 
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1.3  Components of a Control Loop 
The home heating control system of Fig. 1.3 can be organized in the form of a traditional feedback 
control loop block diagram as shown in Fig. 1.4. Such block diagrams provide a general organization 
applicable to most all feedback control systems and permit the development of more advanced 
analysis and design methods.  
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Heat Loss
Disturbance

+-

house temperature
measurement

signal

controller
error

manipulated 
 fuel flow to 

furnace

house 
temperature

controller
output
signal

 
 

Figure 1.4 - Home heating control loop block diagram 
 
Following the diagram of Fig. 1.4, a sensor measures the measured process variable and 

transmits, or feeds back, the signal to the controller. This measurement feedback signal is subtracted 
from the set point to obtain the controller error. The error is used by the controller to compute a 
controller output signal. The signal causes a change in the mechanical final control element, which in 
turn causes a change in the manipulated process variable. An appropriate change in the manipulated 
variable works to keep the measured process variable at set point regardless of unplanned changes in 
the disturbance variables. 
 The home heating control system of Fig. 1.4 can be further generalized into a block diagram 
pertinent to all control loops as shown in Fig. 1.5. Both these figures depict a closed loop system 
based on negative feedback, because the controller works to automatically counteract or oppose any 
drift in the measured process variable. 
 Suppose the measurement signal was disconnected, or opened, in the control loop so that the 
signal no longer feeds back to the controller. With the controller no longer in automatic, a person 
must manually adjust the controller output signal sent to the final control element if the measured 
process variable is to be affected.  

It is good practice to adjust controller tuning parameters while in this manual, or open loop 
mode. Switching from automatic to manual, or from closed to open loop, is also a common 
emergency procedure when the controller is perceived to be causing problems with process operation, 
ranging from an annoying cycling of the measured process variable to a dangerous trend toward 
unstable behavior. 
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Figure 1.5 - General control loop block diagram 
 

 
1.4  The Focus of This Book 
Although an automatic control loop is comprised of a measurement, computation and action, details 
about the commercial devices available for measuring process variables and for implementing final 
control element actions are beyond the scope of this text. For the kinds of process control applications 
discussed in this book, example categories of such equipment include: 
 
     Sensors to Measure:   temperature, pressure, pressure drop, level, flow, density, concentration 
 

     Final Control Elements: solenoid, valve, variable speed pump or compressor, heater or cooler 
 

The best place to learn about the current technology for such devices is from commercial 
vendors, who are always happy to educate you on the items they sell. Contact several vendors and 
learn how their particular merchandise works. Ask about the physical principles employed, the kinds 
of applications the device is designed for, the accuracy and range of operation, the options available, 
and of course, the cost of purchase. Keep talking with different vendors, study vendor literature, visit 
websites and participate in sales demonstrations until you feel educated on the subject and have 
gained confidence in a purchase decision. Don't forget that installation and maintenance are important 
variables in the final cost equation. 
 The third piece of instrumentation in the loop is the controller itself. The automatic 
controllers explored in some detail in this book include: 
 
     Automatic Controllers:  on/off, PID, cascade, feed forward, model-based Smith predictor,  
                                            multivariable, sampled data, parameter scheduled adaptive control 
 
Although details about the many commercial products are beyond the scope of this text, fortunately, 
the basic computational methods employed by most all vendors for the controllers listed above are 
remarkably similar. Thus, the focus of this book is to help you: 
 



 

13 
 

Practical Process Control® by Douglas J. Cooper 
Copyright © 2005 by Control Station, Inc. 

All Rights Reserved 

• learn how to collect and analyze process data to determine the essential dynamic behavior of a 
process, 

 
• learn what "good" or "best" control performance means for a particular process, 
 
• understand the computational methods behind each of the control algorithms listed above and 

learn when and how to use each one to achieve this best performance, 
 
• learn how the different adjustable or tuning parameters required for control algorithm 

implementation impact closed loop performance and how to determine values for these 
parameters, 

 
• become aware of the limitations and pitfalls of each control algorithm and learn how to turn this 

knowledge to your advantage.  
 

 

1.5  Exercises 
 
Q-1.1  New cars often come with a feature called cruise control. To activate cruise control, the driver 

presses a button while traveling at a desired velocity and removes his or her foot from the gas 
pedal. The control system then automatically maintains whatever speed the car was traveling 
when the button was pressed in spite of disturbances. For example, when the car starts going 
up (or down) a hill, the controller automatically increases (or decreases) fuel flow rate to the 
engine by a proper amount to maintain the set point velocity.  

 
 a)  For cruise control in an automobile, identify the:   
   - control objective 
   - measured process variable  
   - manipulated variable   
   - set point   
   - two different disturbances   
   - measurement sensor   
   - final control element 
 
 b)  Draw and properly label a closed loop block diagram for the cruise control process. 
 
 
Q-1.2  The figure below shows a tank into which a liquid freely flows. The flow of liquid out of the 

tank is regulated by a valve in the drain line. The control objective is to maintain liquid level 
in the tank at a fixed or set point value. Liquid level is inferred by measuring the pressure 
differential across the liquid from the bottom to the top of the tank. The level 
sensor/controller, represented in the diagram as the LC in the circle, continually computes 
how much to open or close the valve in the drain line to increase or decrease the flow out as 
needed to maintain level at set point. 
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  Draw and label a closed loop block diagram for this level control process. 
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2.  Case Studies for Hands-On and Real-World Experience 
 
2.1  Learning With a Training Simulator 
Hands-on challenges that demonstrate and reinforce important concepts are crucial to learning the 
often abstract and mathematical subject of process dynamics and control. The Case Studies module, a 
training simulator that challenges you with real-world scenarios, provides this reinforcement. Use 
Case Studies to explore dozens of challenges, brought to life in color-graphic animation, to safely and 
inexpensively gain hands-on experience.  
 The Case Studies module contains several simulations for study. You can manipulate process 
variables to obtain step, pulse, ramp, sinusoidal or PRBS (pseudo-random binary sequence) test data. 
Process data can be recorded as printer plots and as disk files for process modeling and controller 
design studies. The Design Tools module in Loop Pro is well suited for this modeling and design task. 
After designing a controller, return to the Case Studies simulation to immediately evaluate and 
improve upon the design for both set point tracking and disturbance rejection. 
 The processes and controllers available in Case Studies enable exploration and study of 
increasingly challenging concepts in an orderly fashion. Early concepts to explore include basic 
process dynamic behaviors such as process gain, time constant and dead time. Intermediate concepts 
include the tuning and performance capabilities of P-Only through PID controllers and all 
combinations in between. Advanced concepts include cascade, decoupling, feed forward, dead time 
compensating and discrete sampled data control.  
 
2.2  Simulating Noise and Valve Dynamics 
For all processes, changes in the controller output signal pass through a first order dynamic response 
element before impacting the manipulated or disturbance variables. This simulates the lag associated 
with the mechanical movement of a process valve. 
 Normally distributed random error is added to the measured process variable for all processes 
to simulate measurement noise. The value entered can be user-adjusted, is in the units of the measured 
process variable, and represents ±3 standard deviations of the normal distribution of the random error. 
 
2.3  Gravity Drained Tanks  
The gravity drained tanks process, shown in Fig. 2.1, is two non-interacting tanks stacked one above the 
other. Liquid drains freely through a hole in the bottom of each tank. As shown, the measured process 
variable is liquid level in the lower tank. To maintain level, the controller manipulates the flow rate of 
liquid entering the top tank. The disturbance variable is a secondary flow out of the lower tank from a 
positive displacement pump. Thus, the disturbance flow is independent of liquid level except when the 
tank is empty. 
 This is a good process to start your studies because its dynamic behavior is reasonably intuitive. 
Increase the liquid flow rate into the top tank and the liquid level rises. Decrease the flow rate and the 
level falls. One challenge this process presents is that its dynamic behavior is modestly nonlinear. That is, 
the dynamic behavior changes as operating level changes. This is because gravity driven flows are 
proportional to the square root of the hydrostatic head, or height of liquid in a tank. 
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Figure 2.1 - Gravity drained tanks case study 
 
2.4  Heat Exchanger 
The heat exchanger, shown in Fig. 2.2, is a counter-current, shell and tube, lube oil cooler. The measured 
process variable is lube oil temperature exiting the exchanger on the tube side. To maintain temperature, 
the controller manipulates the flow rate of cooling liquid on the shell side. The nonlinear character of the 
heat exchanger, or change in dynamic process behavior evident as operating level changes, is more 
pronounced compared to that of the gravity drained tanks. The significance of nonlinear dynamic 
behavior on controller design will become apparent as we work through this book.  
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Figure 2.2 - Heat exchanger case study 
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 This process has a negative steady state process gain. Thus, as the controller output (and thus 
flow rate of cooling liquid) increases, the exit temperature (measured process variable) decreases. Another 
interesting characteristic is that disturbances, which result from changes in the flow rate of warm oil that 
mixes with the hot oil entering the exchanger, cause an inverse or nonminimum phase open loop response 
in the measured exit temperature.  
 To understand this inverse response, consider that an increase in the warm oil disturbance flow 
increases the total flow rate of liquid passing through the exchanger. Liquid already in the exchanger 
when the disturbance first occurs is forced through faster than normal, reducing the time it is exposed to 
cooling. Hence, the exit temperature initially begins to rise. Now, the warm oil disturbance stream is 
cooler than the hot oil, so an increase in the disturbance flow lowers the mixed stream temperature 
entering the exchanger. 
 Once the new cooler mixed liquid works its way through the exchanger and begins to exit, it will 
steady out at a colder exit temperature than prior to the disturbance. Thus, an increase in the disturbance 
flow rate causes the measured exit temperature to first rise (from faster flow) and then decrease (from 
cooler mixed liquid entering) to a new lower steady state temperature. 
 
2.5  Pumped Tank 
The pumped tank process, shown in Fig. 2.3, is a pickle brine surge tank. The measured process 
variable is liquid brine level. To maintain level, the controller manipulates the brine flow rate out of 
the bottom of the tank by adjusting a throttling valve at the discharge of a constant pressure pump. 
This approximates the behavior of a centrifugal pump operating at relatively low throughput. The 
disturbance variable is the flow rate of a secondary feed to the tank.  
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Figure 2.3 - Pumped tank case study 
 
 Unlike the gravity drained tanks, the pumped tank is not a self regulating process (it does not 
reach a natural steady state level of operation). Consider that the discharge flow rate is regulated 
mechanically and changes only when the controller output changes. The height of liquid in the tank 
does not impact the discharge flow rate. As a result, when the total flow rate into the tank is greater 
than the discharge flow rate, tank level will continue to rise until the tank is full, and when the total 
flow rate into the tank is less than the discharge flow rate, the tank level will fall until empty.  
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 This non-self-regulating dynamic behavior is associated with integrating processes. The 
pumped tank appears almost trivial in its simplicity. Its integrating nature presents a remarkably 
difficult control challenge. 
 
2.6  Jacketed Reactor   
The jacketed reactor, shown in Fig. 2.4 for the single loop case, is a continuously stirred tank reactor 
(CSTR) in which the first order irreversible exothermic reaction A→B occurs. Residence time is 
constant in this perfectly mixed reactor, so the steady state conversion of reactant A from the reactor 
can be directly inferred from the temperature of the reactor product stream. To control reactor 
temperature, the vessel is enclosed with a jacket through which a coolant passes. 
 The measured process variable is the product exit stream temperature. To maintain 
temperature, the controller manipulates the coolant flow rate through the jacket. The disturbance 
variable is the inlet temperature of coolant flowing through the jacket. 
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Figure 2.4 – Single loop jacketed reactor case study 
 
 This process has an upper and lower operating steady state. The process initializes at the 
upper steady state, indicated by high values for percent conversion in the exit stream. You can move 
the  process to its lower steady state by dropping the cooling jacket inlet temperature to low values 
(for example, with the controller output at the startup value of 42%, change the jacket inlet 
temperature to 30°C and the reactor will fall to the lower operating steady state). 
 The process is modeled following developments similar to those presented in many popular 
chemical engineering texts. Assuming an irreversible first order reaction (A→B); perfect mixing in 
the reactor and jacket; constant volumes and physical properties; and negligible heat loss, the model 
is expressed: 

 Mass balance on Reactor A:  ( ) AAA
A kCCC

V
F

dt
dC

−−= 0  

 

 Energy balance on reactor contents: ( ) ( )J
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 Energy balance on reactor jacket: ( ) ( )JJ
J

J
J

PJJJ

J TT
V
F

TT
CV

UA
dt

dT
−+−= 0ρ

 

 
 Reaction rate coefficient:  RTEekk /

0
−=  

 
 
 

2.7  Cascade Jacketed Reactor   
The open loop process behavior of the cascade jacketed reactor, shown in Fig. 2.5, is identical to the 
single loop case. The only difference between the two is the controller architecture. A control cascade 
consists of two process measurements, two controllers, but only one final control element - the same 
final control element as in the single loop case study. The benefit of a cascade architecture, as 
explored later in Chapter 18, is improved disturbance rejection. 
 For the cascade case, the secondary measured process variable is the coolant temperature out 
of the jacket. The secondary or inner loop controller manipulates the cooling jacket flow rate. As in 
the single loop case, the primary or outer measured process variable is still the product stream 
temperature. As with all cascade architectures, the output of the primary controller is the set point of 
the secondary controller. 
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Figure 2.5 - Cascade jacketed reactor case study 
 
 

2.8  Furnace Air/Fuel Ratio 
The furnace air/fuel ratio case study is a process in which a furnace burns natural gas to heat a process 
liquid flowing through tubes at the top of the fire box. As shown in Fig. 2.6, the measured process 
variable is the temperature of the process liquid as it exits the furnace. To maintain temperature, 
controllers adjust the feed rate of combustion air and fuel to the fire box using a ratio control strategy. 
The flow rate of the process liquid acts as a load disturbance to the process.  
 A ratio controller measures the flow rate of an independent or "wild" stream. It then adjusts 
the flow rate of a second dependent stream to maintain a user specified ratio between the two. 
Blending operations are a typical application for ratio control, and here we are blending air and fuel in 
a desired fashion. 
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 For the furnace, the independent stream is the combustion air flow rate and the dependent 
stream is the fuel flow rate. Note that while air flow rate is considered the independent stream for 
ratio control, its flow rate is specified by the temperature controller on the process liquid exiting the 
furnace.  
 Air/fuel ratio control provides important environmental, economic and safety benefits. 
Running in a fuel-rich environment (too little air to complete the combustion reaction) permits the 
evolution of carbon monoxide and unburned hydrocarbons in the stack gases. These components are 
not only pollutants, but unburned hydrocarbon represents wasted energy. A fuel-lean environment 
(air in excess of that needed to complete combustion) results in economic loss because it takes extra 
fuel to heat extra air that is then just lost up the stack. Also, excess air can lead to the increased 
production of nitrogen oxides that promote the formation of smog. In general, it is desirable to 
maintain the ratio of air to fuel at a level that provides a small excess of oxygen, say 2-5%, compared 
to the stoichiometric requirement. 
 The ratio controller also provides an important safety benefit. As shown in Fig. 2.6, it is the 
air flow rate that is adjusted by the temperature controller on the liquid exiting the furnace. When the 
liquid temperature falls below set point, the temperature controller raises the set point flow rate of the 
combustion air. As the air flow ramps up, the air flow transmitter detects the change and sends the 
new flow rate to the ratio controller. The ratio controller responds by increasing the set point to the 
fuel flow controller in order to maintain the specified ratio.  
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Figure 2.6 -Furnace Air/Fuel Ratio case study 
 
 To understand why this is the safer alternative, consider what would happen if the plant were 
to lose combustion air (e.g. the air compressor dies). The air flow transmitter will immediately detect 
the falling flow rate and send the information to the ratio controller. The ratio controller will respond 
by cutting the fuel flow. As a result, the hazardous situation of fuel without sufficient combustion air 
in the furnace fire box will be averted.  
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 Now suppose we make fuel the independent stream and control air flow rate in ratio to the 
fuel. If we were to lose air as the liquid temperature controller calls for more fuel, the ratio controller 
will not be aware that a problem exists because it will only be receiving information from the fuel 
flow transmitter. The ratio controller will continue to send fuel to the furnace in an attempt to raise 
temperature, and an explosive environment will develop. 
 An additional piece of the safety control strategy lies with the high select component (the HS 
with the circle around it on the process graphic that appears when the temperature controller is in 
automatic). As shown in Fig. 2.6, the high select receives two candidate set points. One is the air flow 
rate set point requested by the temperature controller. The other is the minimum air flow rate 
permitted given the current flow rate of fuel. The minimum air/fuel ratio permitted is 10/1, and to go 
below this value means there will be more fuel in the fire box than air needed to combust it.  The high 
select sends the highest of the two candidate set points to the air flow controller, thus ensuring that a 
fuel rich environment is not created. This intervention in the control loop creates interesting control 
challenges. 
 
2.9  Multi-Tank Process 
The multi-tank process is a multivariable version of the single loop gravity drained tanks process. As 
shown in the process graphic of Fig. 2.7, there are two sets of freely draining tanks positioned side by 
side. The two measured process variables are the liquid levels in the lower tanks. To maintain level, 
the two level controllers manipulate the flow rate of liquid entering their respective top tanks.  
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Figure 2.7 – Multi-Tank case study 
 



 

22 
 

Practical Process Control® by Douglas J. Cooper 
Copyright © 2005 by Control Station, Inc. 

All Rights Reserved 

 Similar to the single loop case, the gravity driven flows are proportional to the square root of 
the height of liquid in the tank (hydrostatic head), so this process displays moderately nonlinear 
behavior. Each lower tank has a secondary flow out of the lower tank that is independent of liquid level 
and acts as an operating disturbance.  
 An important feature of this process is that each of the upper tanks drains into both lower 
tanks. This creates a multivariable interaction because actions by one controller affect both measured 
process variables. Note that the characteristics of each drain stream are all different so there is no 
symmetry between feed flow rate and steady state tank level. 

To gain a better understanding of the multivariable loop interactions, suppose the measured 
level in lower tank 1 is below set point. The tank 1 level controller responds by increasing F1, the 
flow rate entering upper tank 1. While this action will cause the level to rise in lower tank 1, the side 
drain out of upper tank 1 will increase, causing the level in lower tank 2 to rise also.  

As the level in lower tank 2 is forced from set point, the tank 2 level controller compensates 
by decreasing the flow rate of F2, the flow rate entering upper tank 2. This decreases the level in tank 
2, but the decrease in the side drain rate out of upper tank 2 causes the level in lower tank 1 to 
decrease. The tank 1 level controller "fights back" with more corrective actions, causing challenging 
multivariable loop interactions. 

Decouplers are simple models of the process that can be designed into a controller architecture to 
minimize such multivariable interaction. As we will learn in Section 20.3, decouplers are feed forward 
elements that treat the actions of another controller as a measured disturbance. 

 
2.10  Multivariable Distillation Column 
The distillation column case study, shown in Fig. 2.8, consists of a binary distillation column that 
separates benzene and toluene. The objective is to send a high percentage of benzene (and thus low 
percentage of toluene) out the top distillate stream and a low percentage of benzene (and thus high 
percentage of toluene) out the bottoms stream. The column dynamic model employs tray-by-tray mass 
and energy calculations similar to that proposed by McCune and Gallier [ISA Transactions, 12, 193, 
(1973)]. 
 To separate benzene from toluene, the top controller manipulates the reflux rate to control the 
distillate composition. The bottom controller adjusts the rate of steam to the reboiler to control the 
bottoms composition. Any change in feed rate to the column acts as a disturbance to the process.  
 To understand the loop interaction in this multivariable process, suppose the composition (or 
purity) of benzene in the top distillate stream is below set point. The top controller will respond by 
increasing the flow rate of cold reflux into the column. This increased reflux flow will indeed increase the 
benzene purity of the distillate stream. However, the additional cold liquid will work its way down the 
column, begin to cool the bottom, and as a result permit more benzene to flow out the bottoms stream.  
 As the bottoms composition moves off set point and produces a controller error, the bottom 
controller will compensate by increasing the flow of steam into the reboiler to heat up the bottom of the 
column. While this works to restore the desired purity to the bottoms stream, unfortunately, it also results 
in an increase of hot vapors traveling up the column that eventually will cause the top of the column to 
begin to heat up.  
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 As the top of the column heats up, the purity of benzene in the distillate stream again becomes too 
low. In response, the top controller compensates by further increasing the flow of cold reflux into the top 
of the column. The controller “fight," or multivariable interaction, begins. Like the multi tank process, 
decouplers can minimize such multivariable loop interaction. 
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Figure 2.8 - Distillation column case study 

  
 
2.11  Exercises 
 
Q-2.1  Measurement sensors are not discussed in this book but are a critical part of any control loop. 

Among other features, consider that a sensor should: 
   - generate a continuous electrical signal that can be transmitted to the controller, 
   - be reasonably priced and easy to install and maintain, 
   - be capable of withstanding the rigors of the environment in which they are placed, 
   - respond quickly to changes in the measured process variable, 
   - be sufficiently accurate and properly calibrated to the application. 
 
  Using only information you obtain from the world wide web, research and then specify such 

details for a: 

 a)  liquid level sensor suitable for both the gravity drained tanks and the pumped tank process 
  
 b)  temperature sensor for the heat exchanger process 
  
 c)  temperature sensor for the single loop jacketed reactor process 
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3.  Modeling Process Dynamics - A Graphical Analysis of Step Test Data 
 
3.1  Dynamic Process Modeling for Control Tuning 
Consider the design of a cruise control system for a car versus that for an eighteen wheel truck. For 
the two vehicles, think about: 
 

        - how quickly each vehicle can accelerate or decelerate using the gas pedal, and 
 

        - the effect of disturbances on each vehicle such as wind, hills and other vehicles passing by. 
 

The actions that a properly designed controller must take to control a car versus a truck, that is, how 
the controller output signal should manipulate gas flow to maintain a constant set point velocity in 
spite of disturbances such as wind and hills, will differ because the dynamic behavior of each vehicle 
"process" is different.  
 The dynamic behavior of a process describes how the measured process variable changes 
with time when forced by the controller output and any disturbance variables. The manner in which a 
measured process variable responds over time is fundamental to the design and tuning of an automatic 
controller.  

The best way to learn about the dynamic behavior of a process is to perform experiments. 
Whether the process to be controlled is found in Loop Pro, a lab or a production facility, this 
experimental procedure entails the following steps: 
 
       1)  The controller output is stepped, pulsed or otherwise perturbed, usually in manual mode, and 

as near as practical to the design level of operation,   

       2)  The controller output and measured process variable data are recorded as the process 
responds,   

 

       3)  A first order plus dead time (FOPDT) dynamic model is fit to this process data,     

       4) The resulting FOPDT dynamic model parameters are used in a correlation to obtain initial 
estimates of the controller tuning parameters, 

 

       5)  The tuning parameters are entered into the controller, the controller is put in automatic and 
controller performance is evaluated in tracking set points and/or rejecting disturbances, 

 

       6)  Final tuning is performed on-line and by trial and error until desired controller performance is 
obtained. 

 
Generating experimental data for step 1 above is best done in manual mode (open loop). The goal is 
to move the controller output far enough and fast enough so that the dynamic character of the process 
is revealed as the measured process variable responds. Because dynamic process behavior usually 
differs as operating level changes (real processes display this nonlinear behavior), these experiments 
should be performed at the design level of operation (where the set point will be set during normal 
operation).  
 The response of the measured process variable during a test must clearly be the result of the 
change in the controller output. To obtain a reliable model from test data, the measured process 
variable should be forced to move at least 10 times the size of the noise band, or 10 times farther than 
the random changes resulting from noise in the measurement signal that are evident prior to the start 
of the test. If process disturbances occurring during a dynamic test influence the response of the 
measured process variable, the test data is suspect and the experiment should be repeated. 
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 It is becoming increasingly common for dynamic studies to be performed with the controller 
in automatic (closed loop). For closed loop studies, the dynamic data is generated by stepping, 
pulsing or otherwise perturbing the set point. Closed loop testing can be problematic because, in 
theory, the information contained in the data will reflect the character of the controller as well as that 
of the process. In practice, however, the controller character rarely produces significant corruption in 
the final FOPDT model parameter values. In the unhappy event that you are not permitted to perform 
either open or closed loop dynamic tests on a process, a final alternative is to search data logs for 
useful data that have been recorded in the recent past. 
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Figure 3.1 - Controller output step with measured process variable response 
 
 The dynamic process data set is then analyzed in step 3 to yield the three parameters of a 
linear first order plus dead time (FOPDT) dynamic process model: 
 

τP )()( ty
dt

tdy
+ = KP  u(t − θP)                                                  (3.1) 

 
where y(t) is the measured process variable and u(t) is the controller output signal. When Eq. 3.1 is fit 
to the test data, the all-important parameters that describe the dynamic behavior of the process result: 
 
 

      - Steady State Process Gain, KP 
 

     - Overall Process Time Constant, τP 
 

     - Apparent Dead Time, θP 
 
 
 The importance of these three model parameters is revealed in step 4, where they are used in 
correlations to compute initial tuning values for a variety of controllers. We will also learn later that 
this model is important because, for example: 
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- the sign of KP indicates the sense of the controller (+KP → reverse acting;   −KP  → direct acting) 
- the size of τP indicates the maximum desirable loop sample time (be sure sample time T ≤ 0.1τP) 
- the ratio θP /τP indicates whether a Smith predictor would show benefit (useful if θP  > τP) 
- the dynamic model itself can be employed within the architecture of feed forward, Smith 

predictor, decoupling and other model-based controller strategies.  

Thus, the collection and modeling of dynamic process data are indeed critical steps in controller 
design and tuning. 

 
3.2  Generating Step Test Data for Dynamic Process Modeling 
The popular experiments to generate dynamic process data include the step test, pulse test, doublet 
test and pseudo-random binary sequence (PRBS) test. Data generated by a pulse, doublet or PRBS 
require a computer tool for fitting the dynamic model and are discussed later in Section 6.3.  
 Here we explore the fitting of a FOPDT dynamic model to step test data using a hand-
analysis of the process response plot. Our goal is to obtain values for process gain, KP, overall time 
constant, τP, and apparent dead time, θP, that reasonably describe the dynamic behavior of the process 
and thus can be used for controller design and tuning. 

Figure 3.1 shows a typical step test response plot. As prescribed in the experimental test 
procedure described earlier, the controller is in manual mode and the controller output and measured 
process variable are initially at steady state. The test entails stepping the controller output to a new 
constant value and collecting data as the measured process variable responds completely to its final 
steady state.  
 
3.3  Process Gain,  KP, From Step Test Data 
The steady state process gain describes how much the measured process variable, y(t), changes in 
response to changes in the controller output, u(t). A step test starts and ends at steady state, so KP can 
be determined directly from the plot axes. Specifically, KP is computed as the steady state change in 
the measured process variable divided by the change in the controller output signal that forced that 
change, or: 
 

                         KP 
)( Output, Controller in the Change StateSteady 

)(Variable, Process Measured in the Change StateSteady 
tu

ty
∆

∆
=                        (3.2) 

 
where ∆u(t) and ∆y(t) represent the total change from initial to final steady state. 
 

Example: Gravity Drained Tanks 
Figure 3.2 shows open-loop step response data from the gravity drained tanks. The process is 
initially at steady state with the controller output at 50%, while the pumped flow disturbance (not 
shown on plot) remains constant at 2.0 L/min. The controller output is stepped from 50% up to a 
new steady state value of 60%. This step increase causes the valve to open, increasing the liquid 
flow rate into the top tank.   
 In response, the measured variable for this process, the liquid level in the lower tank, rises 
from its initial steady state value of 1.93 m up to a new steady state level of 2.88 m. Note that the 
response plot of Fig. 3.2 displays data collected on either side of an average measured liquid level 
of about 2.4 m. 
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Figure 3.2 - KP  computed from gravity drained tanks step test plot 

 
Using Eq. 3.2, the steady state process gain for this process is: 
 

%
m095.0

%5060
m 93.188.2
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u
yK P  

 
Note that KP has a size (0.095), a sign (positive, or +0.095 in this case), and units (m/%).  

 
     

 
Example: Heat Exchanger 
Figure 3.3 shows open loop step response data from the heat exchanger. The controller output is 
initially constant at 25% while the warm oil disturbance flow rate (not shown on plot) remains 
constant at 10 L/min. The controller output is stepped from 25% up to a new steady state value of 
35%. This step increase causes the valve to open, increasing the flow rate of cooling liquid into 
the shell side of the exchanger.  
 The additional cooling liquid causes the measured variable for this process, liquid exit 
temperature on the tube side, to decrease from its initial steady state value of 151.2°C down to a 
new steady state value of 142.6°C. Note that the response plot of Fig. 3.3 displays data collected 
on either side of an average measured exit temperature of about 147°C. 
 Using Eq. 3.2, the steady state process gain is: 
 

%
C86.0

%2535
C151.2142.6 °

−=
−

°−
=

∆
∆

=
u
yK P  

 
Again, KP has a size (−0.86), a sign (negative, or −0.86 in this case), and units (°C/%).  
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Figure 3.3 - KP  computed from heat exchanger step test plot 

 
 

     
 

3.4  Overall Time Constant, τP , From Step Test Data 
The overall process time constant describes how fast a measured process variable responds when 
forced by a change in the controller output. The clock that measures "how fast" does not start until the 
measured process variable shows a clear and visible response to the controller output step. We will 
soon see in Section 3.5 that the delay that occurs from when the controller output is stepped until the 
measured process variable actually starts to respond is the process dead time. To estimate τP from step 
test data: 
 
        1) Locate on the plot where the measured process variable first shows a clear initial response to 

the step change in controller output. The time where this response starts is tYstart. 
 

        2) Locate on the plot the time when the measured variable process reaches y63.2, which is the 
point where y(t) has traveled 63.2% of the total change it is going to experience in response to 
the controller output step. Label t63.2 as the point in time where y63.2 occurs. 

 

        3) The time constant, τP, is then estimated as the time difference between tYstart and t63.2. Since the 
time constant marks the passage of time, it must have a positive value. 

 
The value 63.2% is derived assuming the process dynamic character is exactly described by the linear 
FOPDT model of Eq. 3.1. Details can be found in Section 13.3 (Deriving the τp = 63.2% of Process 
Step Response Rule). In reality, no real process is exactly described by this model form. Nevertheless, 
the procedure most always produces a time constant value sufficiently accurate for controller design 
and tuning procedures. 

 
Example: Gravity Drained Tanks 
Figure 3.4 shows the same step response data from the gravity drained tanks used in the previous 
KP calculation. With the pumped flow disturbance constant at 2.0 L/min, the controller output is 
stepped from 50% up to 60% and the measured liquid level responds from an initial steady state 
of 1.93 m up to a new steady state of 2.88 m.  
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Applying the time constant analysis procedure to this plot: 
 

1) The time when the measured process variable starts showing a clear initial response to the 
step change in controller output is tYstart. From the plot: 

 
tYstart = 9.6 min 

 
2) The measured process variable starts at steady state at 1.93 m and exhibits a total  
 response of ∆y = 0.95 m. Thus, y63.2   is computed: 

 
   y63.2   = 1.93 m + 0.632(∆y)   = 1.93 m + 0.632(0.95 m)   = 2.53 m 

  
  From the plot, y(t) passes through 2.53 m at: 
 

t63.2 = 11.2 min 
        

 3) The overall time constant for this process response is then: 
 

 τP  = t63.2 − tYstart  = 11.2 min − 9.6 min  = 1.6 min 
 
 

1.8
2.0
2.2
2.4
2.6
2.8
3.0

45

50

55

60

8 9 10 11 12 13 14 15 16 17 18

Gravity Drained Tanks - Open Loop Step Test
Process: Gravity Drained Tank Controller: Manual Mode

P
ro

ce
ss

 V
ar

ia
bl

e
C

on
tro

lle
r O

ut
pu

t

Time (mins)

 ∆y = 0.95 m

tYstart t63.2

τP = 1.6 minutes

y63.2 = 2.53 m

 
 

Figure 3.4 - τP  computed from gravity drained tanks step test plot 
 

 
     
 

Example: Heat Exchanger 
Figure 3.5 shows the same step test data used in the previous KP calculation. With the warm oil 
disturbance flow rate constant at 10 L/min, the controller output is stepped from 25% up to 35% 
and the measured exit temperature displays a negative response as it moves from an original 
steady state of 151.2°C down to a final steady state of 142.6°C. 
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Figure 3.5 - τP  computed from heat exchanger step test plot 

 
 
Applying the time constant analysis procedure to this plot: 
 
1) The time when the measured process variable starts showing a clear initial response to the 

step change in controller output is tYstart. From the plot: 
 

tYstart = 6.8 min 
 

2) The measured process variable starts at steady state at 151.2°C and exhibits a total response 
of ∆y = −8.6°C. Thus, y63.2   is computed: 

 
   y63.2   = 151.2°C + 0.632(∆y)   = 151.2°C + 0.632(−8.6°C)   = 145.8°C 

 
 From the plot, y(t) passes through 145.8°C at: 
 

t63.2 = 7.8 min 
 
3) The overall time constant for this process response is then: 
 

 τP  = t63.2 − tYstart  = 7.8 min − 6.8 min  = 1.0 min 
 

     
 

3.5  Apparent Dead Time, θP , From Step Test Data 
Dead time is the time that passes from the moment the step change in the controller output is made 
until the moment when the measured process variable shows a clear initial response to that change. 
Dead time arises because of transportation lag (the time it takes for material to travel from one point 
to another) and sample or instrument lag (the time it takes to collect, analyze or process a measured 
variable sample).  
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 Dead time can also appear to exist in higher order processes simply because such processes 
are slow to respond to a change in the controller output signal. Overall or apparent dead time, θP, 
refers to the sum of dead times evident from all sources.  

If θP > τP, tight control of a process becomes challenging, and the larger dead time is relative 
to the process time constant, the worse the problem. For important loops, every effort should be made 
to avoid introducing unnecessary dead time. This effort should start at the early design stages, 
continue through the selection and location of sensors and final control elements, and persist up 
through final installation and testing.  

 
The procedure for estimating dead time from step response data is: 

 
 1) Locate on the plot tUstep, the time when the controller output step, ∆u(t), is made.  
 
 2) As in the previous τP calculation, locate tYstart, the time when the measured process variable starts 

showing a clear initial response to this controller output step.  
 
 3) The apparent dead time, θP, is then estimated as the difference between tUstep and tYstart. Since dead 

time marks the passage of time, it must have a positive value. 
 
 

Example: Gravity Drained Tanks 
Figure 3.6 shows the same step response data from the gravity drained tanks used in the previous 
calculations.  Applying the dead time analysis procedure to the step test plot of Fig 3.6: 
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Figure 3.6 - θP computed from gravity drained tanks step test plot 
 
1) The step change in the controller output occurs at time tUstep (9.2 min). 
 

2) As in the time constant calculation, the time when the measured process variable starts     
showing a clear initial response to the step change in controller output is tYstart (9.6 min). 
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3)  Thus, the apparent dead time for this process response is 
 

θP   = tYstart − tUstep = 9.6 min − 9.2 min = 0.4 min 
 

     
 

Example: Heat Exchanger 
Figure 3.7 shows the same step response data from the heat exchanger process used in the 
previous calculations.   
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Figure 3.7 - θP computed from heat exchanger step test plot 

 
Applying the dead time analysis procedure to the step test plot of Fig 3.7: 

 
1)  The step change in the controller output occurs at time tUstep (6.5 min). 

     
2)  As in the time constant calculation, the time when the measured process variable, ystart, starts 

showing a clear initial response to the step change in controller output is tYstart (6.8 min). 
 

3)  Thus, the apparent dead time for this process response is: 
 

θP   = tYstart − tUstep = 6.8 min − 6.5 min = 0.3 min 
 

     
 

3.6  FOPDT Limitations - Nonlinear and Time Varying Behaviors 
As detailed in this chapter, a critical step in controller design and tuning is the fitting of the linear 
FOPDT model of Eq. 3.1 to dynamic process data. It may come as a surprise to learn, then, that no 
real process has its dynamics exactly described by this model form. A linear FOPDT model is just too 
simple to describe the higher order, time varying and nonlinear behaviors of the real world.  
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 Though only an approximation, and for some processes a very rough approximation, the 
value of the FOPDT model is that it captures those essential features of dynamic process behavior 
that are fundamental to control. When forced by a change in the controller output, a FOPDT model 
reasonably describes the direction, how far, how fast and with how much delay the measured process 
variable will respond.  
 The FOPDT model of Eq. 3.1 is called "first order" because it has only one time derivative. 
The dynamics of real processes are more accurately described by models that are second, third or 
higher order time derivatives. This notwithstanding, the simplifying assumption of using a first order 
plus dead time model to describe dynamic process behavior is usually reasonable and appropriate for 
controller tuning procedures. And often, a FOPDT model is sufficient for use as the model in model-
based strategies such as of feed forward, Smith predictor and multivariable decoupling control. 
 
Time Varying Behaviors 
The dynamic response of the FOPDT model does not change with time, though the dynamics of real 
processes do. For a given KP, τP, θP and steady state value of u(t), the FOPDT model will compute the 
same steady state value of y(t) tomorrow, next week and next year. If u(t) is stepped from this steady 
state value, the FOPDT model will predict the same y(t) response with equal consistency. 

Real processes, on the other hand, have surfaces that foul or corrode, mechanical elements 
like seals or bearings that wear, feedstock quality or catalyst activity that drifts, environmental 
conditions such as heat and humidity that changes, and a host of other phenomena that impact 
dynamic behavior. The result is that real processes behave a little differently with every passing day. 

The time varying (also called nonstationary) nature of real processes is important to 
recognize because, for a particular operating level, the KP, τP, and θP that best describe the dynamics 
will change over time. As we will see later, this means that the performance of a well tuned controller 
will eventually degrade. It may take weeks or it may take months, but this result is difficult to avoid 
with conventional controllers.  

From a practical perspective, even if loop performance is only fair, in many instances that is 
good enough. Hence, a slow degradation in performance is not always a pressing concern. For 
important loops where tight control has a significant impact on safety or profitability, periodic 
performance evaluation and retuning by a skilled practitioner is a justifiable expense. 

 
Nonlinear Behaviors 
Though a mathematician would classify time varying behaviors as nonlinear, here the term is reserved 
to describe processes that behave differently at different operating levels. Figure 3.8 shows process 
test data at two operating levels. First, a step test moves the process from steady state A to steady state 
B. Then, a second step moves the process from steady state B to steady state C.  

If individual FOPDT models were fit to these two data sets and the process was linear, then 
the KP, τP, and θP computed for both sets would be identical. As shown in Fig 3.8, like most real 
processes, the response is different at the different operating levels. If individual FOPDT models are 
fit to these two data sets, one or more of the model parameters will be different. Hence, this process is 
considered to be nonlinear. 
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Figure 3.8 - A nonlinear process behaves differently at different operating levels 

 
Figure 3.9 explores the nonlinear nature of the gravity drained tanks process. The bottom half 

of the plot shows the controller output stepping in five uniform ∆u's from 40% up to 90%. The top 
half of the plot shows the actual response of the measured process variable, liquid level in the lower 
tank, along with the response of a linear FOPDT model.  
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Figure 3.9 - Linear FOPDT model does not reasonably describe nonlinear behavior of 

gravity drained tanks process across a range of operating levels 
 
Each of the controller output steps are the same, so the linear FOPDT model exhibits five 

identical responses across the entire range of operation. However, the model accurately describes the 
behavior of the process only as it responds to the first controller output step from 40% up to 50%. By 
the time the final steps are reached, the linear model and process behavior become quite different. 
Thus, the gravity drained tanks process is nonlinear, and this is evident because the response of the 
measured process variable changes as operating level changes.  
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The implication of nonlinear behavior is that a controller designed to give desirable 
performance at the lower operating levels may not give desirable performance at the upper operating 
levels. When designing and tuning controllers for nonlinear processes, it is important that the test 
data be collected at the same level of operation where the process will operate once the control loop 
is closed (where the set point is expected to be set). 
 
3.7  Exercises 
 
For all exercises, leave the controller in manual mode and use default values for noise level, disturbance 
value and all other parameters of the case study. 
 
Q-3.1 Click the Case Studies button on the Loop Pro main screen and from the pop-up list of 

processes click on "Gravity Drained Tanks" to start the tanks simulation. 
 
 a) To generate dynamic process data, we need to change the controller output signal. This 

moves the valve position, causing a manipulation in the flow rate of liquid into the top tank. In 
this exercise we are interested in a step change in the controller output.  

 
   At the upper right of the draining tanks graphic on your screen, locate the white number box 

below the Controller Output label. The most convenient way to step the controller output 
value is to click once on this white number box. Click once on the controller output box and it 
will turn blue. For the first step test, type 55 into the box and press Enter. This will cause the 
controller output to change from its current value of 70% down to the new value of 55%, 
decreasing the flow of liquid into the top tank and causing the liquid level to fall.  

 

 b) Watch as the process responds. When the measured process variable (liquid level) reaches its 
new steady state, click on the “pause” icon on the toolbar above the graphic to stop the 
simulation and then click on the "view and print plot" icon to create a fixed plot of the response. 
Use the plot options as needed to refine your plot so it is well suited for graphical calculations 
and then print it. 

 

 c) Using the methodology described in this chapter, use a graphical analysis to fit a first order plus 
dead time (FOPDT) dynamic model to the process response curve. That is, compute from the 
response plot the FOPDT model parameters: steady state process gain, KP, overall time constant, 
τP, and apparent dead time, θP.  

 

 d) Repeat the above procedure for a second step in the controller output from 55% down to 40%.  
 

 e) The two steps in the controller output (70→55% and 55→40%) were both of the same size. Are 
the model parameters the same for these two steps? How/why are they different? 

 
Q-3.2 Click the Case Studies button on the Loop Pro main screen and from the pop-up list of 

processes click on "Heat Exchanger" to start the simulation. 
 
 a) To generate dynamic process data, we will step the controller output signal. At the lower left 

of the exchanger graphic, locate the white number box below the Controller Output label. 
Click once on this box, type 49 and press Enter to change the controller output from its current 
value of 39% up to the new value of 49%. This increases the flow of cooling liquid into the shell 
side of the exchanger and causes the exit temperature of liquid on the tube side to fall.  
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 b) Watch as the process responds. When the measured process variable (exit temperature) reaches 
its new steady state, click on the “pause” icon on the toolbar above the graphic to stop the 
simulation and then click on the "view and print plot" icon to create a fixed plot of the response. 
Use the plot options as needed to refine your plot so it is well suited for graphical calculations 
and then print it. 

 
 c) Using the methodology described in this chapter, use a graphical analysis to fit a first order plus 

dead time (FOPDT) dynamic model to the process response curve. That is, compute from the 
response plot the FOPDT model parameters: steady state process gain, KP, overall time constant, 
τP, and apparent dead time, θP. 

 
 d) Repeat the above procedure for a second step in the controller output from 49% up to 59%.  
 
 e) The two steps in the controller output (39→49%  and  49→59%) were both of the same size. 

Are the model parameters the same for these two steps? How/why are they different? 
 
Q-3.3 Start the jacketed reactor simulation (not the cascade case) by clicking on the Case Studies 

button on the Loop Pro main screen and then clicking on "Jacketed Reactor." 
 
 a) To the right of the graphic, locate the white number box below the Controller Output label. 

Click once on this box change the controller output from 42% up to a new value of 52%. This 
increases the flow of cooling liquid through the cooling jacket side of the reactor and causes the 
measured exit temperature of liquid from the reactor to fall.  

 
 b) Watch as the process responds. When the measured process variable (exit temperature) reaches 

its new steady state, click on the “pause” icon on the toolbar above the graphic to stop the 
simulation and then click on the "view and print plot" icon to create a fixed plot of the response. 
Use the plot options as needed to refine your plot so it is well suited for graphical calculations 
and then print it. 

 
 c) Using the methodology described in this chapter, use a graphical analysis to fit a first order plus 

dead time (FOPDT) dynamic model to the process response curve. That is, compute from the 
response plot the FOPDT model parameters: steady state process gain, KP, overall time constant, 
τP, and apparent dead time, θP.  

 
 d) Repeat the above procedure for a second step in the controller output from 52% up to 62%.  
 
 e) The two steps in the controller output (42→52% and 52→62%) were both of the same size. Are 

the model parameters the same for these two steps? How/why are they different? 
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4.  Process Control Preliminaries 
 
4.1  Redefining “Process” for Controller Design 
As shown in Fig. 4.1, the feedback control loop consists of individual pieces: a controller, a final control 
element, a process, and a sensor/transmitter. The sensor measures the process variable and feeds back the 
signal to the controller. This measured value is subtracted from the set point to determine the controller 
error. The controller uses this error in an algorithm to compute an adjustment signal to the final control 
element. The final control element reacts to the controller output signal and changes the manipulated 
variable in an effort to make the measured process variable equal the set point. 
 The final control element, process, sensor/transmitter and even controller all have individual 
dynamic behaviors. That is, they all have their own gain, overall time constant and apparent dead time. 
Awareness of this fact is important when specifying instrumentation for a new process. Also, if 
undesirable dynamic behaviors of an existing control loop, such as a large dead time, can be traced to the 
final control element or measurement sensor, then the purchase of new equipment or relocation of existing 
equipment should be explored. 
 In general, a final control element and measurement sensor should be specified and installed to 
respond immediately (add little dead time) and complete the response quickly (have a small time 
constant). Note that qualifiers such as “little” and “quickly” are relative to the overall time constant of the 
entire loop. A dead time of 9 minutes is large relative to a time constant of 10 minutes and is small relative 
to a time constant of 1000 minutes.  
 

Set Point Controller Process
Final

Control
Element

Measurement
Sensor/Transmitter

Disturbance

feedback
signal, ym(t)

controller
error, e(t)

manipulated 
process 

variable, m(t)

measured 
process

variable, y(t)controller
output, u(t)

+-+-

 
 

Figure 4.1 - The control loop from a designer's view point 
 
 While the final control element, process and sensor/transmitter all have individual dynamic 
behaviors, from a controller’s viewpoint it is impossible to separate out these different behaviors. 
Consider that a controller sends a signal out on one wire and sees the result of this action as a change in 
the process variable when the measurement returns on another wire. From the controller’s viewpoint, the 
individual gains, time constants and dead times all lump together into a single overall dynamic behavior.  
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Figure 4.2 - The “process” of a control loop when tuning a controller 
 
 As we will learn, controller design and tuning proceeds in the same fashion regardless of whether 
this lumped behavior exhibits a large or small gain, time constant or dead time. The procedure is 
unaffected by whether a particular behavior is due to the process or sensor or final control element. No 
matter which piece contributes a dominant influence, the combined or overall loop behavior must be 
addressed. 
 Since controller design and tuning is the focus of the remainder of this manuscript, it is the 
controller’s viewpoint that is taken. Consequently, for the remainder of this manuscript, “process 
dynamics” refers to the combined behaviors of the final control element, process and sensor/transmitter as 
illustrated in Fig. 4.2. 
 
4.2  On/Off Control – The Simplest Control Algorithm 
The simplest control law is on/off control. For on/off control, the final control element is either completely 
open/on/maximum or completely closed/off/minimum. There are no intermediate values or positions for 
the final control element in on/off control. One big disadvantage with pure on/off control is that 
mechanical final control elements can experience significant wear as they continually and rapidly switch 
from open to closed and back again. 
 To protect the final control element, a popular modification is the use of a dead band, which is a 
zone bounded by an upper and a lower set point, or dead band limit. As long as the measured variable 
remains between these limits, no changes in control action are made. Thus, if a valve is closed, it stays 
closed until the measured process variable passes below the lower dead band limit. The valve will then 
open completely and will remain open until the measured process variable eventually passes above the 
upper dead band limit. 
 On/off with dead band is found in many places in our daily lives. A home heating system uses 
this control law. So does an oven, a refrigerator and an air conditioner. All of these appliances cycle the 
temperature under their control between an upper and low limit around a set point specified by the home 
owner. Figure 4.3 illustrates the actions of a controller output and measured process variable in an on/off 
with dead band control system. 
 As shown in the figure, the controller output is either completely on or completely off. The 
change in the manipulated variable from one position to the other occurs whenever the measured process 
variable crosses one of the dead band limits. Note that by using a dead band, the wear and tear on the final 
control element is reduced but the size of the oscillations in the measured variable increases. 
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Figure 4.3 - Process under on/off control with  dead band 

 
Usefulness of On/Off Control 
On/off controllers have the advantage of being easy to design. The biggest algorithm design issue is 
specification of the dead band limits. Unfortunately, for many applications, such a control law is just too 
limiting. Think about riding in a car that has on/off cruise control. This means the gas pedal can be either 
fully depressed to the car floor or completely disengaged with no intermediate pedal positions possible. It 
would be quite a ride indeed.  
 In general, on/off control is not sufficiently capable for most lab and production applications. The 
remainder of this book explores the design and tuning of intermediate value control laws that offer this 
necessary sophistication and consequently are widely used in the lab and plant.  
 
4.3  Intermediate Value Control and the PID Algorithm 
More powerful control algorithms that permit tighter control with less oscillation in the measured process 
variable are required for a variety of process applications. These algorithms compute a complete range of 
control actions between full on and full off. Not surprisingly, one requirement for implementation is a 
final control element that, when signaled by the controller, can assume intermediate positions between full 
on and full off. Example final control elements include process valves, variable speed pumps and 
compressors, and electronic heating elements.  
 The most popular intermediate algorithm, the proportional-integral-derivative controller, 
computes an intermediate value signal based on the current value of the control error (error equals set 
point minus measurement). The basic PID algorithm is expressed as follows: 
 
 
                         u(t) = ubias + 43421

alproportion

)(teKC +                          +                                                    (4.1) 

 
where: 
 u(t) = controller output signal 
 ubias  = controller bias or null value 
 e(t)  = controller error; e(t) = ysetpoint – y(t) 
 y(t) = measured value of process variable 

4434421
integral
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 KC  = controller gain  (proportional tuning parameter) 
 τI = controller reset time  (integral tuning parameter) 

 τD = controller derivative time  (derivative tuning parameter) 
    
The PID algorithm continually computes control actions u(t) in an attempt to drive error e(t) to zero. 
As labeled in Eq. 4.1, each of the three terms works independently and with a slightly different 
agenda. The proportional term computes a contribution to the control action based on the current size 
of e(t) at the moment of measurement. No influence of past measurements or future trends is 
considered in the proportional computation. 

The integral term continually sums or accumulates e(t) over time. The integral continues to 
grow as long as error is positive and begins shrinking when error becomes negative. Thus, the integral 
term increases its influence when either positive or negative error persists for some time.  

The derivative term looks at the slope or rate of change in error. Thus, its influence grows 
when error is rapidly changing and seeks to slow down such movement. One result is that derivative 
action tends to dampen oscillations in the measured process variable. 

The PID algorithm can be implemented in P-Only, PI, PD and full PID forms. The design and 
tuning of such controllers and the strengths and weaknesses of each P, I and D controller mode is the 
focus of the next several chapters. 
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5.  P-Only Control - The Simplest PID Controller 
  
5.1  The P-Only Controller 
The PID (proportional-integral-derivative) controllers are by far the most widely used family of 
intermediate value controllers in the chemical process industry. The simplest in this family is called 
proportional or P-Only control.  
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Figure 5.1 - Gravity drained tanks under P-Only control 
 
Figure 5.1 shows the gravity drained tanks under P-Only control. The set point, the square wave in the 
upper half of the plot, starts at a level of 2.4 m and steps up to 2.8 m followed by a step down to 2.0 m. 
The measured level in the lower tank, the upper plot line distinguished by the noise or random error, 
generally moves along with the changing set point though it displays some oscillation with the effort. 

 The controller output signal is the line in the lower half of the plot. As the term “intermediate 
value control” implies, the controller output assumes many intermediate values between full open and full 
closed as the controller works to cause the liquid level in the lower tank to track the changing set point. 
The pumped disturbance flow (not shown) was constant at 2.0 L/min during the test. 

This control system, typical of the family of PID controllers, repeats the measurement, 
computation and action procedure at every loop sample time: 
 

- a sensor measures the liquid level in the lower tank, 
- this measurement is subtracted from the set point level to determine a control error,  
- the control algorithm uses this error to compute a new controller output signal, which when 

transmitted to the valve causes it to move to a new position,  
- the change in valve position causes the flow rate of liquid into the top tank to change, which 

ultimately causes a change in level in the lower tank.  
 

The goal is to eliminate (or at least minimize) the controller error by making the measured level in the 
lower tank equal the set point level.  

One distinguishing feature of a P-Only controller, as shown in Fig. 5.1, is that it is only able to 
make the measurement equal the set point when the set point is at the design value of 2.4 m. When set 
point is not at the design value, offset occurs in most processes. This phenomenon is discussed later in this 
chapter. 
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The P-Only control algorithm computes a controller output signal every loop sample time as: 
 
              )()( teKutu Cbias +=                                (5.1) 
 
where u(t) is the controller output signal, ubias is the controller bias (also called the null value by some 
manufacturers) and KC is the single tuning parameter called controller gain. Controller error, e(t), is 
computed at every sample time as: 
        e(t) = ysetpoint − y(t)                (5.2) 
 
where ysetpoint is the set point and y(t) is the current value of the measured process variable.  

Controller gain, KC, in Eq. 5.1 is the second "gain" we have discussed. Controller gain should be 
distinguished from steady state process gain, KP. Rearrangement of Eq. 5.1 reveals that controller gain, 
KC, describes how the controller output signal changes given a change in the controller error. A larger KC  
means the controller output will change more for a given error.  Similar to KP , controller gain also has a 
size, sign and units. 
 

5.2  The Design Level of Operation 
Nonlinear processes have a dynamic process behavior that changes as operating level changes. Because 
real processes are nonlinear, it is important to recognize that a controller should be designed for a specific 
level of operation. When designing a cruise control system for a car, would it make sense to perform 
dynamic modeling studies when the car is traveling twice the normal speed limit while going down hill in 
a hurricane? Of course not.  

For a proper controller design, first determine where you expect the set point to be set during 
normal operation. Second, determine typical values for the important disturbance variables. This is 
important because as disturbance variables change, so can the values for the FOPDT model parameters 
KP, τP and θP that best describe the dynamic behavior of the process.  

With this information in hand, dynamic testing should occur as close as practical to the design 
value of the measured process variable when the disturbances are quiet and near their typical values. Thus, 
the design level of operation for a cruise control system is when the car is traveling near the normal speed 
limit on flat ground on a relatively calm day. The design level of operation for the P-Only control system 
shown in Fig 5.1 is a level in the lower tank near 2.4 m when the pumped disturbance flow is 2.0 L/min. 
 

5.3  Understanding Controller Bias, ubias 
Suppose Eq. 5.1 is the algorithm used for cruise control in an automobile and u(t) is the flow of gas to the 
engine computed by the controller. Further suppose that the velocity set point for the car is 70 kph and 
the current measured velocity is also 70 kph. Since y(t) equals ysetpoint, then e(t) equals zero and Eq. 5.1 
becomes: 
                                                                          u(t) = ubias                                              (5.3) 
 
 If ubias is zero, then Eq. 5.3 says that when set point equals measurement, the flow of gas to the 
engine, u(t), is also zero. This makes no sense. Clearly if the car is traveling 70 kph then some baseline 
flow of gas is going to the engine. This baseline value of the controller output is called the bias or null 
value. In this example, the bias is the flow of gas that, in open loop, causes the car to travel the design 
velocity of 70 kph when the disturbance variables are at their normal or expected values.  
 Consider a second example of the gravity drained tanks. Here suppose the measured level equals 
the set point value, so e(t) in Eq. 5.1 equals zero. If no liquid is flowing into the top tank, the tanks will 
empty. Hence, to maintain the liquid level in the lower tank at set point, some baseline flow rate of liquid, 
or ubias, must always be entering the top tank.  



 

43 
 

Practical Process Control® by Douglas J. Cooper 
Copyright © 2005 by Control Station, Inc. 

All Rights Reserved 

 Similarly for the heat exchanger, if no cooling water is flowing through the shell side, then the 
hot liquid will exit the exchanger at the same temperature that it enters. To achieve any amount of cooling, 
some baseline volume of cooling water must always be flowing through the exchanger. This requirement 
of a controller output baseline value holds true for most all processes.  
 Thus, when a process is under P-Only control and the set point equals the measurement, some 
baseline or bias value of the controller output must exist or the measured process variable will drift from 
set point. This bias value of the controller output is determined from the design level of operation of the 
process to be controlled. Specifically, ubias is the value of the controller output that, in open loop (manual 
mode), causes the measured process variable to maintain steady state at the design level of operation 
when the process disturbances are at their design or expected values. 
 A P-Only controller bias is assigned a value as part of the controller design and remains fixed 
once the controller is put in automatic. Some commercial manufacturers call the bias the null value. 
 

5.4  Controller Gain, KC , From Correlations 
The P-Only controller has the advantage of having only one adjustable or tuning parameter, KC,, that 
describes how aggressive the controller output will move in response to changes in controller error, e(t). 
For a given value of e(t) in the P-Only algorithm of Eq. 5.1, if KC is small, then the amount added to ubias 
is small and the controller responds sluggishly. If KC is large, then the amount added to ubias is large and 
the controller responds aggressively. Thus, KC can be adjusted or tuned for each process to make the 
controller more or less active in its actions when measurement does not equal set point. 
 Designing any controller from the family of PID algorithms entails the following steps:  
   - specifying the design level of operation,  
   - collecting dynamic process data as near as practical to this design level,  
   - fitting a FOPDT model to the process data to obtain model parameters KP, τP and θP, 
   - using these model parameters in a correlation to obtain initial controller tuning values.  
 

Final tuning may require some trial and error once the controller is online so loop performance will match 
that desired by the control designer. 
 The tuning correlations available in Design Tools for all controllers of the PID family are the 
Internal Model Control (IMC) relations. The exception is the P-Only controller, as no IMC correlation can 
be derived for this simple controller form. 

As an alternative, Design Tools computes KC using the integral of time-weighted absolute error 
(ITAE) tuning correlation for set point tracking (also called servo control) as: 

 

                       1.220.20 ( / )p pC
p

K           
K

τ θ=                                         (5.4) 

 

Although not automatically computed by Design Tools, the FOPDT model parameters can be used in the 
ITAE for disturbance rejection (also called regulatory control) correlation: 
 

         1.080.50 ( / )p pC
p

K           
K

τ θ=                             (5.5) 

 

These correlations provide an initial guess or starting point for final controller tuning. Even with this 
formal controller design procedure, final tuning requires online trial and error because: 

- the control designer may desire performance different from that provided by the correlation,  
- the FOPDT model used for tuning may not match the actual dynamic behavior of the plant,  
- performance may need to be balanced over a range of operation for nonlinear processes,  
- performance may need to be balanced for best set point tracking and disturbance rejection. 

 

Ultimately, it is the designer who defines what “best” control performance is for an application.  



 

44 
 

Practical Process Control® by Douglas J. Cooper 
Copyright © 2005 by Control Station, Inc. 

All Rights Reserved 

 When two correlations provide quite different initial controller gain estimates, the conservative 
approach is to start with the smallest KC value. This will give the least aggressive (most sluggish) 
performance. If the resulting performance is too sluggish in rejecting disturbances and tracking changes in 
the set point, KC should be increased. Conversely, if the process responds quickly and oscillates to an 
uncomfortable degree, KC  is too large and should be reduced. 
 
5.5  Reverse Acting, Direct Acting and Control Action  
Controller gain, KC, computed from tuning correlations such as Eq. 5.4 and 5.5 will always have the same 
sign as the process gain, KP. Time constant and dead time cannot affect the sign of the controller gain in 
these correlations because parameters of time are always positive. Thus, a process with a positive KP will 
have a controller with a positive KC. 
 For a process with a positive KP, the process variable increases when the controller output 
increases. Thus, in closed loop, if the process variable is too high, the controller has to decrease the 
controller output signal to correct the error. The controller action is the reverse of the problem. Thus, 
when a process has a positive KP  and thus KC, the controller must be reverse acting. Conversely, when KP 
and thus KC are negative, the controller must be direct acting, or: 
 

KP and KC  positive →  reverse acting 
 

KP and KC  negative →  direct acting 
 
 In most commercial controllers, a positive value of the controller gain is always entered. The sign 
(or action) of the controller is then assigned by specifying that the controller is either reverse or direct 
acting to indicate a positive or negative KC respectively. If the wrong control action is entered, the 
controller will quickly drive the final control element to full on/open or full off/closed and remain there 
until a proper control action entry is made. 
 
5.6  Set Point Tracking in Gravity Drained Tanks Using P-Only Control 
P-Only controller design requires specifying a design level of operation, a controller bias and controller 
gain. Here we explain the design of the P-Only controller used in Fig. 5.1. The design level of operation 
for this example is a measured level in the lower tank of 2.4 m while the pumped flow disturbance during 
normal operation is expected to be about 2.0 L/min.  

The controller bias is determined by searching for the value of the controller output that, in 
manual mode, causes the measured level to steady at 2.4 m when the disturbance is at its design value. 
Through trial and error, the bias value of the controller output, or ubias, is determined to be 55.2% (please 
note that in typical industrial operations, such a three significant digit accuracy for the controller output 
far exceeds realistic expectations). 

To verify that this bias is used, note that ysetpoint and y(t) both equal 2.4 m (the design value) for 
the first few minutes in Fig 5.1. Since e(t) equals zero for these minutes, then Eq. 5.1 says u(t) should 
equal the ubias value of 55.2%. The controller output trace in Fig. 5.1 reveals that this is true.  

To compute KC for the P-Only controller, we need a FOPDT model fit of dynamic process data 
collected around the design level of operation. We take advantage of the FOPDT fit detailed in Fig. 3.2, 
3.4 and 3.6, which show a step test for the gravity drained tanks. In these figures, the process is initially 
at steady state with the controller output at 50% while the pumped flow disturbance is constant at 2.0 
L/min. The controller output is stepped from 50% up to 60%, causing the measured tank level to rise 
from its initial steady state value of 1.93 m up to a new steady state level of 2.88 m.  
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Because the gravity drained tanks is nonlinear, a best design would fit dynamic process data 
collected from above and below the design level of operation so as to average the nonlinear effects. 
The plots contain dynamic data equally distributed above and below the design level of 2.4 m, 
making this FOPDT fit well-suited for our design. The analysis presented in Chapter 3 yields the 
model parameters: 
 

          Process Gain,  KP  = 0.095 m/% 
 

          Time Constant,  τP  = 1.6 min   
 

          Dead Time,  θP = 0.40 min 
 

 Using these parameters in the ITAE for set point tracking correlation of Eq. 5.4 produces an 
initial KC estimate: 

                                     KC  = 
1.220.20 1.6 11.5

0.095 0.40
⎛ ⎞ =⎜ ⎟
⎝ ⎠

%/m 

 
Because KC is positive, the controller must be specified as reverse acting. As discussed above, the bias is 
55.2%. Thus, the P-Only controller is as follows: 
 
               u(t) = 55.2% + 11.5 e(t)                               (5.6) 
 
Again please recognize that there are more significant digits used in Fig 5.6 than can be realistically 
obtained from typical plant data. 
 The performance of this controller in tracking set point changes is pictured in Fig. 5.1. The upper 
right corner of the plot displays information about the controller: PID (P= RA, I= off, D= off). Since the 
integral and derivative terms are off, this confirms a P-Only reverse acting controller. As shown in Fig. 
5.1, the level in the lower tank does not track the first set point step all the way up to 2.8 m. This sustained 
error between the measurement and set point is called offset and is discussed in the next section. The 
measured level then responds well and exhibits no offset when the set point returns to the design level of 
operation of 2.4 m. With the final set point step down to 2.0 m, the controller again exhibits offset. 
 
5.7  Offset - The Big Disadvantage of P-Only Control 
The biggest advantage of P-Only control is that there is only one tuning parameter to adjust, so it is 
relatively easy to achieve a “best” final tuning. The disadvantage is that this control algorithm permits 
offset. Offset occurs in most processes under P-Only control when the set point and/or disturbances are at 
a value other than that used as the design level of operation (that used to determine ubias).  
 Consider the P-Only controller of Eq. 5.6. If y(t) is steady at ysetpoint, then e(t) is steady at zero. If 
e(t) is steady at zero, then controller output u(t) is steady at the ubias value of 55.2%. And if u(t) is steady at 
55.2% (and assuming the disturbance is constant at 2.0 L/min), then the lower tank will steady at the 
design level of 2.4 m. We know this because the ubias value of 55.2% was determined by trial and error as 
the controller output in manual mode that causes the lower tank to steady at 2.4 m. Thus, under P-Only 
control, the measured process variable can be steady at the design set point and no sustained error or offset 
will be present. 
 How can Eq. 5.6 produce a value for u(t) that is different from ubias at steady state? The only way 
this can happen is if e(t) is not steady at zero. That is, whenever the desired level of operation is other than 
the design value of 2.4 m, there must be a steady state error so u(t) can assume a value other than the ubias 
value of 55.2%. This sustained error is called offset.  
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 As controller gain increases, the offset will decrease. Unfortunately, as controller gain increases, 
the oscillations in the measured process variable will increase and can even go unstable. The impact of KC 
on offset and oscillatory behavior is illustrated in Fig. 5.2, which shows a step set point change for the 
gravity drained tanks under P-Only control for two different controller gains. 
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Figure 5.2 – P-Only offset decreases and oscillations increase as controller gain increases 
 
5.8  Disturbance Rejection in Heat Exchanger Using P-Only Control 
Whether the control objective is set point tracking or disturbance rejection, controller design always 
begins by determining the design level of operation. Dynamic process data is then collected as near as 
practical around this level. For this study, a constant measured exit temperature of 147°C is desired. The 
control objective is to reject disturbances that occur when the warm oil flow rate changes, causing a 
change the mixed stream temperature entering the tube side of the exchanger. The warm oil disturbance 
flow is normally about 10 L/min but spikes as high as 20 L/min on occasion. 

The bias is the value of the controller output that, in open loop, causes the measured exit 
temperature to steady at 147°C when the disturbance flow is 10 L/min. Through trial and error, ubias is 
found to be 29.2% (again, for industrial operations, this three significant digit accuracy far exceeds 
realistic expectations). As shown for the first few minutes in Fig 5.3, when y(t) and ysetpoint both equal 
147°C and the disturbance equals 10 L/min, then u(t) indeed equals the ubias value of 29.2%.   

Even though disturbance rejection is the goal, it is still controller output to measured process 
variable dynamics that must be fit with the FOPDT model. We take advantage of the FOPDT fit detailed 
in Fig. 3.3, 3.5 and 3.7 for the heat exchanger. In these figures, the process is initially at steady state 
with the controller output at 25% while the warm oil disturbance flow is constant at 10 L/min. The 
controller output is stepped from 25% up to 35%, causing the measured exit temperature to fall from 
its initial steady state value of 151.2°C down to a new steady state level of 142.6°C.  
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Because the heat exchanger is nonlinear, a best design would fit dynamic process data 

collected from above and below the design level of operation to average out the nonlinear effects. 
The plots contain dynamic data equally distributed above and below the design level of 147°C, 
making this FOPDT fit well-suited for our design. The analysis presented in Chapter 3 yields the 
model parameters: 
          Process Gain, KP = −0.86 °C/%    

          Time Constant, τP = 1.0 min     

          Dead Time, θP = 0.3 min 
 
The ITAE correlation of Eq. 5.5, intended for disturbance rejection applications, results in the 
controller gain: 

                 KC   = 
1.080.50 1.0

0.86 0.3
⎛ ⎞
⎜ ⎟− ⎝ ⎠

 =   − 2.1 %/°C  

 
As expected, KC carries the same negative sign as KP. Thus, we choose direct acting as the 

action of the P-Only controller. Using Eq. 5.1, the P-Only controller is shown below in Eq. 5.7:  
 

               u(t) = 29.2% − 2.1 e(t)                             (5.7) 
 
 Figure 5.3 shows the performance of this controller in rejecting step changes in the warm oil 
disturbance flow rate. The set point is held constant throughout the experiment at the design operating 
level of 147°C. As expected, offset equals zero whenever the set point and disturbance are at their design 
values. When the disturbance flow rate steps from 10 L/min up to 20 L/min, however, offset results even 
though the set point remains at the design value. 
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Figure 5.3 - Disturbance rejection performance of heat exchanger under P-Only control 
for two different values of controller gain while set point is constant 
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 Half way through the experiment, the (absolute value of the) controller gain is decreased from the 
ITAE design value of −2.1 %/°C to −1.0 %/°C. The disturbance flow rate step is then repeated. Similar to 
the controller gain investigation shown in Fig. 5.2 for gravity drained tanks set point steps, the offset 
increases and the oscillatory nature of the response decreases as the (absolute value) controller gain is 
decreased. 
  
5.9  Proportional Band 
Some instrumentation manufacturers use different terminology for the controller gain tuning parameter. 
The popular alternative found in the marketplace is proportional band, PB. If the measured and 
manipulated variable of a process have units of percent and both can range from 0 to 100%, then the 
conversion between gain and proportional band is: 
 

               
CK

PB 100
=                               (5.8) 

 
While the examples in this book assign engineering units to the measured process variable, most 
commercial installations use units of % for both controller output and the process variable.  
 
5.10  Bumpless Transfer to Automatic 
Commercial controllers with a “bumpless transfer" feature achieve a smooth transition to closed loop by 
automatically setting values for the controller bias and set point when the controller is put in automatic. 
Specifically, when the control loop is closed:   

1) the bias is set equal to the current value of the controller output, and  
2) the set point is set equal to the current value of the measured process variable. 

 

Hence, when the controller is put in automatic, there is no controller error and the bias is properly set to 
produce no offset. As a result, no immediate control action is necessary that would “bump” the measured 
process variable.  
 
5.11  Exercises 
 
Unless otherwise directed, use default values for noise level and all other simulation parameters. 
 
Q-5.1  For the gravity drained tanks, the level in the lower tank is to remain constant at 3.0 m. Your 

process operator tells you that disturbances are a problem because the pumped flow 
disturbance, normally constant at 2.0 L/min, occasionally spikes to 5.0 L/min. Your objective 
is to explore a P-Only controller designed to reject these disturbances. As a first step, record 
the design set point for your P-Only controller. 

 

 a)  Adjust the controller output signal to move the process to the design level of operation (a 
measured process variable of 3.0 m when the major disturbance is 2.0 L/min). Record the bias 
value for your P-Only controller. 

 

     b)  Perform an appropriate open loop step test and use the dynamic response data to estimate a 
first order plus dead time (FOPDT) model for this process. (Hint: even though disturbance 
rejection is the goal, it is still the controller output that is stepped. Because the process is 
nonlinear, it is good practice to include data from above and below the design value of the 
measured process variable). 
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 c)  Use these FOPDT model values in the ITAE for disturbance rejection correlation to compute 
a P-Only controller gain, KC. Be sure to specify the sign, magnitude and units of KC. 

 

 d)  Using your design set point, bias and controller gain, implement a P-Only controller. 
Generate plots showing the performance of the controller in rejecting step increases in the 
pumped disturbance flow rate from 2.0 L/min up to 5.0 L/min and back again, allowing the 
response to settle after each step. 

 

      e)  Double your KC computed in part d, step increases in the pumped disturbance flow rate from 
2.0 L/min up to 5.0 L/min and back again, and generate a new set of plots. Halve your KC 
from part d and repeat the experiment again. Using these plots, discuss how the magnitude of 
KC impacts offset and the oscillatory nature of the response.  

 
Q-5.2  Design a P-Only controller for the heat exchanger where the design level of operation is a 

measured exit stream temperature of 133°C when the warm oil disturbance flow is at its 
design value of 10 L/min. Several times a day, the exchanger must respond to requests to step 
the set point from 133°C up to 138°C. Begin by recording the design set point. 

 

 a)  Adjust the controller output signal to move the process to the design level of operation (a 
measured process variable of 133°C when the major disturbance is 10 L/min). Record the  
bias value for your P-Only controller. 

 b)  Perform an appropriate open loop step test and use the dynamic response data to estimate a 
first order plus dead time (FOPDT) model for this process. (Hint: the process is nonlinear so 
include data from above and below the design value of the measured process variable). 

c)  Use these FOPDT model values in the ITAE set point tracking correlation to compute a P-
Only controller gain, KC. Be sure to specify the sign, magnitude and units of KC. 

d)  Using your design set point, bias and controller gain, implement a P-Only controller. 
Generate a plot showing the performance of the controller in tracking steps in the set point 
from 133°C up to 138°C and back again, allowing the response to settle after each step. 

      e)  Fine tune your controller gain by trial and error and search for the “best” KC that balances 
offset with oscillatory behavior when tracking this set point step. Remember that as the 
designer, you define what constitutes “best” performance. As well as generating a plot of 
your final tuning, be sure to explain what criteria you used to define “best.” 

 

 f)  Using your “best” KC, generate a plot showing a step change in set point from 133 oC up to 
138°C and back again, allowing the response to settle after each step. Follow that with a step 
decrease from 133°C down to 128°C and back again. Using the plot to support your 
argument, discuss how the nonlinear nature of this process impacts controller performance for 
set point tracking. 

 
Q-5.3  For the jacketed reactor (not the cascade case), the design level of operation is a measured 

reactor exit temperature of 92°C when the cooling jacket inlet temperature (a disturbance) is 
at its design value of 50 L/min. During product change over, which occurs once a shift, the 
reactor temperature must be changed from 92°C up to 95°C. Your assignment is to design a 
P-Only controller to track this set point change.  
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 a)  Determine and record the design set point and controller bias value for your controller. 
 

 b)  Perform an appropriate open loop step test and use the dynamic response data to estimate a 
first order plus dead time (FOPDT) model for this process. Be sure the response plot includes 
data from above and below the design level of operation.  

 

 c)  Use these FOPDT model values in the ITAE set point tracking correlation to compute a P-
Only controller gain, KC. Be sure to specify the sign, magnitude and units of KC. 

 

 d)  Using your design set point, bias and controller gain, implement a P-Only controller. 
Generate a plot showing the performance of the controller in tracking steps in the set point 
from 92°C up to 95°C and back again, allowing the response to settle after each step. 

 

      e)  Fine tune your controller gain by trial and error and search for the “best” KC that balances 
offset with oscillatory behavior when tracking this set point step. Remember that as the 
designer, you define what constitutes “best” performance. As well as generating a plot of 
your final tuning, be sure to explain what criteria you used to define “best.” 
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6.  Automated Controller Design Using Design Tools 
 
6.1  Defining Good Process Test Data 
Whether you are fitting a model to process test data for controller tuning, for process simulation using 
Custom Process, or for developing models for advanced strategies such as feed forward or the Smith 
predictor, the answer to all five of these questions about your data should be "yes," and ultimately, it is 
your responsibility to consider all of these five steps to ensure success. 
 
1. Was the process at steady state before data collection started?  
Suppose a controller output change forces a dynamic response in a process, but the data file only 
shows the tail end of the  response  without  showing the actual controller output change that caused 
the dynamics in the first place. Design Tools will indeed fit a model to this data, but it will skew the fit 
in an attempt to account for an unseen "invisible force." This model will not be descriptive of your 
actual process and hence of little value for control. To avoid this problem, it is important that data 
collection begin only after the process has settled out. Design Tools can then properly account for all 
process variations when fitting the model. 
 
2. Is the first point in the test data equal to the steady state value of step 1? 
Asking Design Tools to assume important facts about your data can lead to unfortunate results if the 
assumptions are wrong. Knowledge of the initial steady state of the process prior to data collection is 
fundamental to computing process and controller gain for any software tool. Thus, you must assume 
responsibility for verifying the initial steady state. Design Tools helps you by using the first data point 
in your data file as representative of the initial state of the process. But if noise or random error has 
caused this first point to shift from a reasonable initial value, edit the data using a Design Tools utility 
and adjust this data point by hand based on your knowledge of the process.  
 
3. Did the test dynamics clearly dominate the process noise? 
When generating dynamic process data, it is important that the change in controller output cause a 
response in the process that clearly dominates the measurement noise. We suggest defining a noise 
band as ±3 standard deviations of the random error around the process variable during steady 
operation. Then, when during data collection, the change in controller output should force the process 
variable to move at least ten times this noise band (the signal to noise ratio should be greater than ten). 
If you meet or exceed this requirement, your data will be rich in the dynamic information needed for 
controller design. 
 
4. Were the disturbances quiet during the dynamic test? 
It is essential that the test data contain process variable dynamics that have been clearly (and in the 
ideal world exclusively) forced by changes in the controller output as discussed in step 3. Dynamics 
caused by unmeasured disturbances can seriously degrade the accuracy of an analysis because Design 
Tools will model those behaviors as if they were the result of changes in the controller output signal. 
In fact, a model fit can look perfect, yet a disturbance that occurred during data collection can cause 
the model fit to be nonsense. If you suspect that a disturbance event has corrupted test data, it is 
conservative to rerun the test. 
 
5. Did the model fit appear to visually approximate the data plot? 
This is perhaps the easiest of the steps because Design Tools will display a plot that shows the model 
fit on top of the data. If the two lines don't look similar, then the model fit is suspect. Of course, as 
discussed in step 4, if the data has been corrupted by unmeasured disturbances, the model fit can look 
great yet the usefulness of the analysis can be compromised.  
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6.2  Limitations of the Step Test 
Chapter 3 explores generating dynamic process data using a step test, where the controller output is 
stepped from one constant value to another, causing the measured process variable to move from one 
steady state to a new steady state. As shown in that chapter, step tests are useful because FOPDT 
(first order plus dead time) models can be fit to the response plot by direct graphical analysis. 

Unfortunately, the step test is simply too limiting to be useful in many practical applications. 
The drawback is that it takes the process away from the desired operating level for a relatively long 
period of time. Recall that when collecting data for a nonlinear process using a step test, best practice 
is to move the measured process variable to one side of the design level of operation and then step the 
controller output so that response data is centered on average around the design level. As a 
consequence, step tests in the plant can result in significant off-spec product that may need 
reprocessing or even disposal.  

A second problem common to all open loop tests, including those discussed in the next 
section, is that in production situations, operating personnel may simply be unwilling to open a loop 
(put the controller in manual) “just” to generate dynamic process data. In this surprisingly common 
situation, closed loop testing must be performed as discussed toward the end of this chapter. 
 
6.3  Pulse, Doublet and PRBS Test 
Popular open loop experiments used to generate dynamic process data beyond the step test include 
the pulse, doublet and pseudo-random binary sequence (PRBS) tests. Unlike the step test, model 
parameters cannot be fit by a simple graphical analysis of the process response plots from these tests. 
In fact, a computer program such as Loop Pro’s Design Tools is required for data analysis. 
 
Pulse Testing 
A pulse test, shown in Fig. 6.1, can be thought of as two step tests performed in rapid succession. The 
controller output is stepped up, and as soon as the measured process variable shows a clear response, 
the controller output is returned to its original value. Ordinarily, the process does not reach steady 
state before the return step is made.  
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Figure 6.1 - Controller output pulse with measured process variable response 
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 Pulse tests have the desirable feature of starting from and returning to an initial steady state. 
Unfortunately, they only generate data on one side of this steady state (which presumably is the 
design level of operation) and this is not best practice when nonlinear processes are being studied. 
The doublet test solves this problem. 
 
Doublet Testing 
A doublet test, shown in Fig. 6.2, is two pulse tests performed in rapid succession and in opposite 
direction. The second pulse is implemented as soon as the process has shown a clear response to the 
first pulse. The process does not ordinarily respond to steady state for either pulse. 
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Figure 6.2 - Controller output doublet with measured process variable response 
(popular with practitioners) 

 
The doublet test offers several benefits, including: 
 

- starting from and returning reasonably quickly to the design level of operation, 
- producing data both above and below the design level, and 
- having a relatively small maximum deviation in the measured process variable from the initial 
 steady state, thus minimizing off-spec production. 

 

For these reasons, many industrial practitioners find the doublet to be the preferred method of 
generating open loop dynamic process data. 
 
PRBS Testing 
A pseudo-random binary sequence (PRBS) test, shown in Fig. 6.3 is characterized by a sequence of 
controller output pulses that are uniform in amplitude, alternating in direction, and of random 
duration. The "pseudo" is in the name because true random behavior is a theoretical concept that is 
unattainable by computer algorithm. Thus, in practice, approximate or pseudo-randomness using a 
random number generator must suffice for determining the duration of each pulse.  

The PRBS test permits generation of useful dynamic process data while causing the smallest 
maximum deviation in the measured process variable from the initial steady state. Since this implies a 
minimum of off-spec production, PRBS, in theory anyway, is the most desirable of the open loop 
methods. Unfortunately, proper PRBS experiment design presents practical difficulties that often 
counterbalance this benefit. 
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Figure 6.3 - Controller output pseudo-random binary sequence with process variable response 
 

 PRBS experiment design requires specification of several characteristics of the controller 
output signal trace, including the controller output: 

 

  - initial value,  
 - pulse amplitude,  
 - average pulse duration, and  

  - standard deviation of the random change in pulse duration around this average. 
 

The length of the experiment itself must also be specified. Since an optimum experiment design 
requires knowledge of the process gain, time constant and dead time, the very values you are 
performing the experiment to determine, the design logic becomes somewhat circular. If you 
ultimately perform the experiment a number of times in a search of a “best” test, you may well have 
been better off simply performing the quick and practical doublet test 
 
6.4  Noise Band and Signal to Noise Ratio 
When generating dynamic process data, it is important that the change in the controller output signal 
causes a response in the measured process variable that clearly dominates the measurement noise. 
One way to quantify the amount of noise in the measured process variable is with a noise band.  

As illustrated in Fig. 6.4, a noise band is based on the standard deviation of the random error 
in the measurement signal when the controller output is constant and the process is at steady state. 
Here we define noise band as ±3 standard deviations of the measurement noise around the steady state 
of the measured process variable (99.7% of the signal trace is contained within the noise band). While 
other definitions of the noise band have been proposed, this definition is conservative when used for 
controller design.  

Employing this definition for generating dynamic process data, the change in controller 
output should cause the measured process variable to move at least ten times the size of the noise 
band. Expressed concisely, the signal to noise ratio should be greater than ten. In Fig. 6.4, the noise 
band is 0.25°C. Hence, the controller output should be moved far and fast enough during a test to 
cause the measured exit temperature to move at least 2.5°C. This is a minimum specification. In 
practice it is conservative to exceed this value. 
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Figure 6.4 - Noise band encompasses ± 3 standard deviations of the measurement noise 

 
 

6.5  Automated Controller Design Using Design Tools 
Design Tools offers two tools for controller design and analysis. One is the dynamic model fitting 
tool that automatically fits dynamic models to process data. Models can be fit to data generated by 
Loop Pro, other software packages, and perhaps most important, to data generated by real processes 
in the lab or plant.  

Figure 6.5 shows a portion of a data file in proper format for use in Design Tools. The file 
must contain at least three columns, one for time stamp data, one for manipulated variable data 
(which is the controller output for PID algorithm design), and one for the measured process variable 
data. The data must be ASCII text with entries separated by tabs, commas or spaces. Every space in a 
column must have an entry; there can be no blank spaces. 

 
 
 

        Time          Controller Output        Process Variable
        0.00          70.0                  4.00
        0.15               70.0                  4.01
        0.30               80.0                  3.99
        0.45               80.0                  4.03
        0.60               80.0                  4.09
        0.75              80.0                 4.17

first PV value must equal
the true initial steady state

process must be at steady state
when data collection begins

 
 

Figure 6.5 – Example process data file used by Design Tools 
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The linear dynamic models available in the Design Tools library include:   

First Order Plus Dead Time (FOPDT) 
First Order Plus Dead Time Integrating 
Second Order Plus Dead Time (SOPDT) Overdamped 
Second Order Plus Dead Time Overdamped with Lead Time 
Second Order Plus Dead Time (SOPDT) Underdamped 

 
 The fit routine systematically searches for the model parameters that minimize the sum of 
squared errors (SSE) between the response contained in the measured data and the response predicted 
by the model being fit when it is forced by the manipulated variable data in the file. With i indicating 
any one of the N total data points in the set, the SSE is expressed: 
 

                                           ]DataModelData[MeasuredSSE 2

1
ii

N

=i
    = −∑                             (6.1) 

 

In general, the smaller the SSE, the better the model describes the data. To obtain a meaningful fit, it 
is essential to recognize that: 

 
 

   • the process must be at steady state before collection of dynamic data begins,   
             • the first data point in the file must equal this initial steady state value.  
 
 
If these conditions are not met, the model fit will be incorrect and of little use.  

When your goal is controller design and tuning, a FOPDT model should be fit so the popular 
controller tuning correlations and design rules-of-thumb can be exploited. The other dynamic models 
in the library are useful when constructing advanced controller architectures such as feed forward, 
Smith predictor and model predictive control (MPC) algorithms. They are also useful when accurate 
simulation of dynamic process behavior using Custom Process is the goal. 
 The second feature of Design Tools is the controller tuning tool. Using the results of a 
successful FOPDT model fit, tuning values for P-Only, PI and PID controllers are computed. The 
library of popular tuning correlations is based on the internal model control (IMC) relations. These are 
an extension of the popular lambda tuning correlations and include the added sophistication of directly 
accounting for dead time in the tuning computations. 
 

Example: Heat Exchanger Doublet Test 
Section 5.8 presented a P-Only controller design for the heat exchanger using a graphical fit of step 
test data. The design level of operation for that study was a measured exit temperature of 147°C. The 
control objective focused on disturbance rejection because the warm oil disturbance flow rate, 
normally about 10 L/min, was said to occasionally spike as high as 20 L/min. We learned in that 
study that in open loop, a controller output of 29.2% causes the measured exit temperature to steady 
at 147°C when the disturbance is at its design value of 10 L/min. In fact, this is how we determined 
the controller bias in that example. 

In this example we fit a FOPDT model and tune a P-Only controller using a doublet test and 
Design Tools, and compare the results with the graphical step test analysis of Section 5.8. As shown 
in Fig.6.6, we start with the heat exchanger at steady state at the design level of operation.  
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While saving data to file, we pulse the controller output first up 3% and then down 3% from 
the initial value of 29.2% (pulses of this size move the measured process variable across a range of 
nonlinear operation similar to that of the previous step test). After each pulse, we wait for a clear 
response in the measured process variable but do not wait for steady state.  

The data file is then read into Design Tools and the columns containing time, 
manipulated variable (controller output) and process variable data are correctly labeled. The 
FOPDT model is selected from the library and the fit routine is executed. The model fit is also 
shown in Fig.6.6. 
 

 
Figure 6.6 - Design Tools fit of heat exchanger doublet test data using a FOPDT model 

  
The model fit may appear to be in error because its trace lies below the data during much 

of the dynamic portion of the experiment. In reality, however, the model slightly overshoots the 
data on the downward trace and then undershoots the data on the upward trace. Thus, the Design 
Tools fit of the linear FOPDT model effectively averages the nonlinear behavior of the heat 
exchanger.  

 
 
                                            ← Open Loop Data  →                    Closed Loop Data 
 

        Graphical Analysis       Design Tools                 Design Tools Fit  
             Of Step Test   Doublet Fit                 of Set Point Doublet 
 

Process Gain,  KP  (°C/%)   −0.86         −0.90      −0.86    

Time Constant,  τP  (min) 1.0 1.1 1.2 
   

Dead Time,  θP  (min) 0.3  0.9 1.0  
 

Sum of Squared Errors (SSE)             44.1 3.2 5.4 
 

ITAE Controller Gain, KC  (%/°C)      −2.1                       −0.7                                −0.7  
 
 

Table 6.7 – Comparing FOPDT models for heat exchanger 
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 In Table 6.7, the two columns under the “Open Loop Data” label show the model fit from this 
doublet test along side the FOPDT fit results from the step test graphical analysis. As shown, the 
step test analysis yields (what we will learn is) essentially the same values for KP and τP when 
compared to the Design Tools fit of open loop doublet test data. The θP for the two methods, on 
the other hand, are quite different. 
 So which fit is “better?” And how do we determine “better?” One time-tested method of 
comparing a model to data is by visual inspection. Figure 6.8 shows the same heat exchanger 
doublet test data that was used in Fig. 6.6. Also shown is a FOPDT model trace generated using 
the KP, τP and θP from the step test graphical analysis. 
 

 
 

Figure 6.8 - Comparing FOPDT model from step test analysis to doublet test data 
 

 It is clear from visual inspection that the Design Tools model of Fig. 6.6 more accurately 
describes the data then does the step test model shown in Fig. 6.8. An alternative to visual 
inspection is to compare the SSE as defined in Eq. 6.1 for the two fits. As listed in Table 6.7, the 
Design Tools doublet fit has an SSE of 3.2, while the step test graphical analysis model has an 
SSE of 44.1. The dramatically lower SSE for the Design Tools fit confirms our visual conclusion. 
 Note that the poor model from the step test was a result of the graphical analysis 
methodology, which makes many simplifying assumptions. The step test itself is capable of 
producing useful dynamic data, and in general, Design Tools can accurately model data 
regardless of whether a step, pulse, doublet or PRBS is used as the testing method (though to be 
useful in controller design, the data must have been properly generated). 
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6.6  Controller Design Using Closed Loop Data 
It is increasingly common to have operations personnel in a production facility reject the idea of 
opening an existing loop so controller design data can be collected. In these situations, you must be 
prepared to perform dynamic studies when the controller is in automatic. In theory, closed loop 
testing can be problematic because the information contained in the data will reflect the character of 
the controller as well as that of the process. In practice, however, this theoretical concern rarely 
causes real world problems. 

For closed loop studies, dynamic data is generated by stepping, pulsing or otherwise 
perturbing the set point. To generate proper data, the controller must be tuned aggressively enough so 
that, similar to open loop testing, the changing controller output forces the measured process variable 
to move more than ten times the noise band. Also, the data set must begin at steady state. 

 

 
 

Figure 6.9 - Closed loop test of heat exchanger using a set point doublet 
  
 Figure 6.9 shows a closed loop test of the heat exchanger. The P-Only controller gain is KC = 
−1 for this test (a wide range of controller gains will produce similar FOPDT models). The set point 
doublet used in the experiment generates a measured process variable response that covers a range of 
nonlinear operation similar to that evident in the previous open loop step and doublet tests.  

As required for a Design Tools analysis, the process is at steady state before the first set point 
step is made. While data is being saved to file, the set point is stepped up and then down 4 oC from 
the initial design level of operation. After the experiment, the file is read into Design Tools, the data 
columns are labeled, and a FOPDT model is fit to the data.   
 Figure 6.10 shows the FOPDT model fit of the heat exchanger data generated in the closed 
loop test of Fig. 6.9. A visual inspection of Fig. 6.10 and a comparison of SSE’s and model 
parameters as summarized in Table 6.7 establish that it is certainly possible to obtain an accurate 
dynamic model from closed lop data. 
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Figure 6.10 - Design Tools fit of closed loop heat exchanger test data 
 
6.7  Do Not Model Disturbance Driven Data! 
For a controller to take appropriate action in response to controller error, the algorithm must 
specifically associate how the controller output affects the measured process variable. The way this 
association is best developed is through a FOPDT dynamic model. The appropriateness of initial  
tuning from tuning correlations is directly related to the accuracy of the model employed.  
 For this reason, it is essential that the process data used for modeling studies contains 
measured process variable dynamics that have been clearly (and in the best of all worlds exclusively) 
forced by changes in the controller output. Extraneous events such as dynamics caused by disturbance 
variables will degrade the accuracy of the FOPDT model, and thus the initial tuning of the controller. 
 To illustrate, consider the extreme case shown in Fig. 6.11. Similar to Fig. 6.9, the heat 
exchanger is under P-Only control with KC = −1. Here, however, the set point remains constant and 
the dynamic event is forced by changes in the warm oil disturbance flow rate. With data being saved 
to file, the disturbance flow, initially at 10 L/min, is stepped up to 12.5 L/min, down to 7.5 L/min, 
and back to the initial value of 10 L/min. The experiment data is read into Design Tools and fit with a 
FOPDT model. The resulting model and experiment data are shown in Fig. 6.12. Visual inspection of 
Fig. 6.12 reveals that the model accurately represents the data.  
 Table 6.13 compares the results of this disturbance driven FOPDT model with a proper 
model, assigned here as the Design Tools fit of open loop doublet data listed in Table 6.7. The fit of 
disturbance driven data is quite disturbing. Not only are all of the FOPDT model parameters quite 
wrong, but the steady state process gain even has the wrong sign!  
 
 

142

144

146

148

150

24
26
28
30
32
34
36
38

0 5 10 15 20 25

FOPDT Fit of Closed Loop Data
Model: First Order Plus Dead Time (FOPDT) File Name: CLOSED.DAT

Gain (K) = -0.86, Time Constant (T1) = 1.20, Dead Time (TD) = 0.96SSE: 5.38

P
ro

ce
ss

 V
ar

ia
bl

e
C

on
tro

lle
r O

ut
pu

t

Time

closed loop data and 
FOPDT model fit 



 

61 
 

Practical Process Control® by Douglas J. Cooper 
Copyright © 2005 by Control Station, Inc. 

All Rights Reserved 

146

147

148

27
28
29
30
31

7.5

10.0

12.5

0 5 10 15 20 25 30

Disturbance Drives Dynamic Process Event
Process: Heat Exchanger Controller: PID ( P= DA, I= off, D= off ) 

Tuning:  Bias = 29.2, Gain = -1.00, Sample Time = 1.00

P
V

/S
et

po
in

t
C

on
tro

lle
r O

ut
pu

t
D

is
tu

rb
an

ce

Time (mins)

Set point is constant

disturbance changes
drive dynamic event

 
 

Figure 6.11 – Dynamic process data forced by changes in the disturbance variable 
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Figure 6.12 – Disturbance driven process data is well described by the FOPDT model 
 

 Although not shown by example, be aware that open loop data can also be corrupted by 
disturbance events. Further, it is not required for the event to be solely disturbance driven for 
problems to arise. To be conservative, if you suspect that a disturbance significant enough to 
influence the measured process variable has occurred during a test, you should repeat the test. 
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                 Controller Output Driven Data           Disturbance Driven Data 
 

              (Proper FOPDT Model)             (Nonsense Result)   
 

Process Gain,  KP  (oC/%)      −0.90                       0.97    

Time Constant,  τP  (min)    1.1                          0.02 
   

Dead Time,  θP  (min)    0.9                            0.0   

 
Table 6.13 – Comparing controller output driven model to disturbance driven model 

 
 

6.8  FOPDT Fit of Underdamped and Inverse Behaviors 
FOPDT models cannot accurately describe the dynamic behavior of some processes even in narrow 
operating ranges. Underdamped and inverse processes display dynamic response behavior that is 
quite different than the classic step response shape discussed to this point.  
 
Underdamped Process 
Figure 6.14 shows a FOPDT fit of an underdamped step response. When a process is underdamped, 
the measured process variable oscillates as it responds to a controller output step.  
 Interestingly, even though the process response looks quite different from the FOPDT model 
fit, the popular tuning correlations still yield initial controller tuning parameters that provide 
reasonable closed loop performance. This is because, in spite of the mismatch between the 
measurement and model, the FOPDT model still describes the direction, how far, how fast and with 
how much delay the measured process variable responds to the change in controller output. This, after 
all, is the information ultimately required for controller design and tuning. 
 

  
Figure 6.14 - FOPDT model fit of an underdamped process 
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Inverse Process 
Figure 6.15 shows a FOPDT fit of an inverse (also called nonminimum phase) step response. When a 
process exhibits inverse behavior, the measured process variable first moves in one direction before it 
ultimately responds to steady state in the opposite direction. An example of this behavior can be 
found on the heat exchanger, where a step change in the warm oil disturbance flow rate produces an 
inverse response in the measured exit temperature.  
 As shown in Fig. 6.15, the FOPDT model approximates the inverse portion of the measured 
process variable as dead time. By doing so, the tuning correlations will cause the controller to 
essentially ignore the inverse portion of the response and rely on the final behavior in making control 
action decisions. Otherwise, the controller will be “chasing its tail” in trying to compensate for the 
temporary deviations. Thus the FOPDT model again provides appropriate information for the popular 
tuning correlations. 
 

 
 

Figure 6.15 - FOPDT model fit of an inverse process 
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7.  Advanced Modeling of Dynamic Process Behavior 
 
7.1  Dynamic Models Have an Important Role Beyond Controller Tuning 
As discussed toward the end of Chapter 3, no real process has its dynamic behavior exactly described 
by a FOPDT (first order plus dead time) model. Yet when forced by a change in the controller output, 
a FOPDT model reasonably describes the direction, how far, how fast and with how much delay the 
measured process variable will respond. This simple model thus provides the essential information 
required for controller tuning. 
 Dynamic models play an important role in process control beyond tuning. Two uses 
considered in this chapter are modeling for offline simulation, and modeling for the construction of 
model based controller architectures. 
 For offline simulation, Loop Pro provides for the creation of stand alone process models 
using Custom Process. Simulations are useful, for example, to investigate how different controller 
algorithms, architectures and tuning options perform on a particular process. The varied behaviors of 
processes can also be studied. The more studies that can substitute a simulation for the actual process 
are, the greater will be the savings in both time and money.  
 Offline studies become especially important when operations makes a process “off limits” for 
extended experimentation. It should come as no surprise to hear that the value of conclusions drawn 
using an offline simulation depend on how well the simulation model describes the true dynamic 
behavior of the process.  
 For model based control, Loop Pro offers a number of popular architectures including feed 
forward, Smith predictor and multivariable decouplers. These advanced architectures employ a 
dynamic model within the controller structure to predict the future behavior of a process. This enables 
control actions to be taken in advance if the predicted future does not match a desired behavior. As 
might be expected, the controller model must predict the true dynamics of a process with reasonable 
accuracy for success with these advanced architectures.  
 For offline simulation and model based control, a model must describe more than the basic 
“how far, how fast and with how much delay” features required for tuning. Improved accuracy is 
achieved by fitting the best model form to an appropriate set of dynamic process data. For these uses, 
an expanded list of models should be considered.  
 As summarized in Table 7.1, the two most popular dynamic models other than FOPDT 
include second order plus dead time (SOPDT) and second order plus dead time with lead time 
(SOPDT w/L). These models contain additional parameters that permit them to describe certain 
process behaviors with greater accuracy than can be achieved with the FOPDT form. 
 In earlier chapters we discussed what constitutes an “appropriate” set of dynamic process 
data. In particular, we noted that the manipulated variable must be moved far enough and fast enough 
so that the measured process variable displays a clear response that dominates the noise band of the 
measurement signal. Also, the data sample rate must be ten times the process time constant or faster, 
the process must start at steady state before data collection begins, and the first point in the data file 
must equal this steady state value. 
 In this chapter we explore the three dynamic models of Table 7.1 to better understand how to 
select the “best” model form. Like controller tuning, there is not one answer. Ultimately, it is the 
designer who decides when a dynamic process model is suitably descriptive for the task at hand. 
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7.2  Overdamped Process Model Forms 
This book focuses on the control of process properties like temperature, pressure, level, flow, density, 
concentration and the like where the process streams are comprised of gases, liquids, slurries and 
melts. For this class of control challenges, the process variables very rarely display a natural tendency 
to oscillate (unlike, say, a mass and spring process that will oscillate quite nicely when perturbed). 
Processes that do not have an inherent (open loop) tendency to oscillate are called overdamped. 
 A large portion of overdamped processes are also self regulating. Self regulating processes 
seek a steady state operating level if all manipulated and disturbance variables are held constant for a 
sufficient period of time. Loop Pro’s gravity drained tanks, heat exchanger, jacketed reactor and 
distillation column are examples of overdamped, self regulating processes. If you perform a step test 
on the pumped tank, on the other hand, you will see the behavior of a non-self regulating process. 
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Table 7.1 – Practical Overdamped Dynamic Model Forms 
 
 Table 7.1 lists the three most popular dynamic models used in process control to describe 
overdamped, self regulating dynamic process behavior. Each model is of higher order than the 
previous model on the list and this implies additional parameters that must be fit to the data.  
 An additional adjustable parameter lets a model better track the “bumps and curves” 
commonly found in process data. Because a dynamic model must reliably interpolate the data it is 
fit to, this added capability seems desirable.  

Where: 
 

 y(t) = measured process variable signal 
 

 u(t) = controller output signal 
 

 KP = process gain; units of  y(t)/u(t) 
 

 τP = process time constant; units of time 
 

 τL = process lead time; units of time 
 

θP    = process dead time; units of time 
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 Yet in control applications a model is also often required to extrapolate the data. During 
extrapolation beyond the limits of the original data, it is not uncommon for this “bumps and curves” 
descriptive capability to become exaggerated. The result can be wholly unrealistic predictions of 
process behavior. In this sense, a higher order model is a detriment.  
 In general, always choose the simplest model form that provides an acceptable fit of your 
data. Simple models will likely provide the most reasonable extrapolation beyond the limits of that 
data. 
 
7.3  The Response Shape of First and Second Order Models 
Table 7.1 shows that the FOPDT model has one time derivative and a single time constant. In 
comparison, the SOPDT model has a first and second time derivative and two time constants. The 
added derivative and associated time constant of the SOPDT model permits a rather subtle but 
surprisingly valuable benefit in describing dynamic process behavior.  
 

Process Response Shapes When Forced by Step Change 

First Order Second Order

 single arc
 response

Pr
oc

es
s 

Va
ria

bl
e

Pr
oc

es
s 

Va
ria

bl
e

 ‘s’ shaped
  response

 
 

Figure 7.2 – Added time constant of second order model enables a gradual “s” shaped response 
 
 As shown in Fig. 7.2, the second time derivative and time constant of the SOPDT model 
permits the computed process variable, y(t), to respond with a gradual “s” shape when forced by a 
step change. The single time derivative and time constant of the FOPDT model restricts the computed 
process variable response to a sudden or disjoint arc shape as shown in the figure. 
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Figure 7.3 – Second order model permits better description of gravity drained tanks data  
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 The ability of the SOPDT model to respond in a more gradual fashion means that the model 
can describe real process data with greater accuracy. Figure 7.3 shows doublet response data from the 
gravity drained tanks. A Design Tools fit of a FOPDT (upper plot) and SOPDT (lower plot) model are 
also shown. Not only is the fit better in the lower chart based on visual inspection, but the sum of 
squared errors (SSE) is significantly lower (recall as discussed in Section 6.5, the smaller the SSE the 
better the model describes the data).  
 
7.4  The Impact of KP, τP and θP on Model Behavior 
As the process gain, KP, time constant, τP, and dead time, θP, change, so does model behavior. The 
following study of these parameters is presented to help you refine your intuition. Loop Pro’s Custom 
Process module is used to implement the models. 
 
Steady State Process Gain, KP 
As shown in Fig 7.4, process gain is the “how far” variable. When the gain doubles in the center 
portion of the plot, the model computes a response that travels twice as far for the same change in 
controller output. When gain changes sign in the right portion of the plot, the response reverses 
directions but the response shape is unaffected. Though the plot is from a FOPDT model with a time 
constant of 10 time units and no dead time, the behaviors and observations hold for the other models 
in Table 7.1. 
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Figure 7.4 – Larger gain means the process variable responds farther for a step in controller output 

 
 
Time Constant, τP 
Figure 7.5 illustrates that time constant is the “how fast” variable, describing how quickly a process 
responds to a change in controller output. The right portion of Fig. 7.5 shows that when the first order 
time constant increases from 10 to 25 time units while the FOPDT gain and dead time are held 
constant, the response takes two and half times longer to complete.  
 Relating this time constant observation to a SOPDT model requires Eq. 7.1, which explains 
how the two time constants of a second order model can be approximated with a single equivalent 
first order time constant. To compute the first order equivalent, add the larger of the two second order 
time constants to one half the smaller value, or: 
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                                                              τFO ≈ τSO,max + 0.5τSO,min                                                       (7.1) 
 

where:  τFO  = equivalent first order time constant 
 τSO,max = larger of the two second order time constants 
 τSO,min = smaller of the two second order time constants 
 

50

55

60

50

55

60

65

0 50 100 150 200 250 300 350 400 450 500

Process: Custom Process Controller: Manual Mode
P

ro
ce

ss
 V

ar
ia

bl
e

C
on

tro
lle

r O
ut

pu
t

Time  (time units)

KP =   1
θP  =   0

τP = 10 τP = 25

Impact of Time Constant on Dynamic Model Behavior

 slower
response

 
Figure 7.5 – Larger time constant means the process variable responds slower 

 
To demonstrate, consider a SOPDT model with time constants of 7.5 and 5.0 time units. The first 
order approximation is computed as: 
 

                                           τFO ≈  7.5  + 0.5(5.0)   = 10 time units 
 
That is, the behavior of the second order model can be approximated as a first order model with a 
single time constant of 10 time units. 
 This result is demonstrated in Fig 7.7, which shows the response of a FOPDT model with a 
single time constant of 10 time units to the left and a SOPDT model with time constants of 7.5 and 
5.0 time units to the right. Except for the more gradual “s” shape at the beginning of the second order 
response, the two plots are very similar as predicted by Eq. 7.1. 
 The implication of this result is that doubling the response time of a second order model is 
not achieved by doubling the two individual time constants. On the contrary, it requires doubling the 
equivalent first order time constant approximation. As suggested by Eq. 7.1, this can be achieved a 
number of ways for a model. Two ways the response time of the previous second order process can be 
doubled to 20 time units are shown in Table 7.6: 
 
   τP1     τP2   τFO 
 

  17.5    5.0  τFO ≈  17.5  + 0.5(5.0)     = 20 time units 
  15.0  10.0  τFO ≈  15.0  + 0.5(10.0)   = 20 time units 
 

Table 7.6 – Two ways to make the response time of a second order model equal 20 time units 
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Figure 7.7 – How the time constants of a SOPDT model relate to that of the FOPDT model 

 
 
Dead Time, θP  
Dead time is the “with how much delay” variable. A response shape is unaffected by a change in dead 
time except that as dead time increases, the time delay before the process begins its first detectable 
response to a change in controller output increases. This is true for all of the models in Table 7.1. 
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Figure 7.8 – Longer dead time means there is a longer delay before the process responds 

 
 Figure 7.8 shows the response of two models with identical gain and time constant when 
forced by the controller output. The plot to the left is from a model with zero dead time while that to 
the right is from a model with a dead time of 25 time units. Except for the delayed response indicated 
in Fig 7.8 due to dead time, the response shapes are identical. 
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7.5  The Impact of Lead Element τL on Model Behavior 
As indicated in Table 7.1, lead time, τL, is a parameter that weights the rate of change (derivative) of 
the controller output signal, u(t). It has units of time, but unlike a process time constant, it can be 
either positive or negative. This is possible because lead time does not describe a time frame in which 
a process variable evolves (which must proceed forward in time). Rather, it describes the influence 
that the controller output has on the measured process variable.  
 Suppose u(t) is rapidly increasing (has a large positive derivative). If lead time, τL, is positive, 
the model says to impart a large positive movement to y(t) on top of that dictated by the process gain 
and time constants (which describe the “natural” dynamics of the process). If τL is negative, the model 
says to impart a large negative movement to y(t) when u(t) is rapidly increasing.  
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Figure 7.9 – Lead time can be positive or negative and has a profound impact on response shape 

 
 The influence of lead time is shown in Fig. 7.9 for a SOPDT w/L (second order plus dead 
time with lead time) model. When lead time is large and positive as shown to the left in Fig. 7.9, the 
additional large positive movement imparted to y(t) causes it to overshoot the steady state before it 
returns to its proper final value. When lead time is large and negative as shown to the right in the 
figure, the additional large negative movement imparted to y(t) actually causes it to go the wrong 
direction (inverse response) before correcting itself and moving to its proper steady state. 
 In spite of the extra dynamic influence of the lead element, the final steady state is still 
established by the value of the process gain, KP. As always, the process time constants influence the 
speed of response, but their impact is well masked in the above example. 
 When the SOPDT w/L model is viewed in the Laplace domain (shown in Table 7.1), note 
that the lead term is in the numerator while the time constant terms are in the denominator. Because 
of this arrangement, it is possible for the lead term to cancel out a process time constant if they are the 
same value. 
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Equation 7.2 shows a SOPDT w/L model where KP  = 1, θP = 2, τP1 = 5,  τP2 = 10, and τL = 10. Because 
terms cancel as shown, Eq. 7.2 will behave exactly like a FOPDT model.  
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Figure 7.10 – FOPDT response is identical to SOPDT w/ L when terms cancel 

 
 Figure 7.10 demonstrates this. Two responses are shown, one for a true FOPDT model 
response with KP  = 1, θP = 2 and τP = 5 to the left and one for the SOPDT w/L model discussed above 
to the right. Because terms cancel as shown in Eq. 7.2, the two responses are identical. 
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8.  Integral Action and PI Control 
  
8.1  Form of the PI Controller 
Like the P-Only controller, the Proportional-Integral (PI) controller computes an output signal to the final 
control element based on tuning parameters and the controller error, e(t). Called the ideal, continuous and 
position form, the PI controller is expressed in Eq. 8.1: 
 

                ∫+= dtte
K

teKutu
I

C
C )( + )()( bias τ

              (8.1) 

 

As before, u(t) is the controller output, ubias is the controller bias, and KC is controller gain (a tuning 
parameter). The additional tuning parameter, τI, provides a separate weight to the integral term, has units 
of time (and thus is always positive), and is commonly referred to as reset time. Because τI  is in the 
denominator, smaller values of reset time provide a larger weight to (increase the influence of) the 
integral term. 
 The first two terms to the right of the equal sign in Eq. 8.1 are identical to the P-Only controller 
of Eq. 5.1. The integral mode of the PI controller is an additional and separate term added to the 
equation that integrates or continually sums the controller error over time.  
 Though not required to understand the actions of a PI controller, we present the Laplace 
transfer function form for completeness. The Laplace form of the PI controller is: 
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8.2  Function of the Proportional and Integral Terms 
As with the P-Only controller, the proportional term of the PI controller, KC e(t), adds or subtracts from 
ubias based on how far the measured process variable is from the set point at any instant in time. That is, 
the contribution to u(t) from the proportional term is based on the size of e(t) at time t. As e(t) grows or 
shrinks, the amount added to ubias grows or shrinks immediately and proportionately. The past history and 
current trajectory of the controller error have no influence on the proportional term computation. 
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Figure 8.1 – Proportional calculation is based only on current error at time t 
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 Figure 8.1 illustrates this for a set point response with arrows that mark the size of e(t) used in the 
proportional term computation at time t = 20 and at time t = 48. Figure 8.2 shows the identical data cast as 
a plot of error itself, created by subtracting the measured process variable from set point at each point in 

time. As shown, controller error continually changes size and sign as time passes. Controller error also has 
units, which in commercial systems is often percent of span.  
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Figure 8.2 – Error, e(t), continually changes size and sign as time passes 
 
 In contrast, the integral term of the PI computation considers the history of the error, addressing 
how long and how far the measured process variable has been from the set point over time. The integral 
term integrates or continually sums up the error history. Thus, even a small error, if it persists, will have a 
sum total that grows over time and the integral term contribution added to ubias will similarly grow.  
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Figure 8.3 - Integral of error is the area between the set point and measurement 
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 As indicated in Fig. 8.3, the result of the continual summing of integration, starting from the 
moment the controller is put in automatic, is the computation of the area on the graph between the set 
point and measured process variable. Thus, at time t = 30 min, when the measured process variable first 
crosses the set point in Fig.8.3, the integral is:  
 

                                                              120)(
min30

min0
∫ =dtte                            (8.3) 

 
 The contribution this integral ultimately makes to ubias in the PI controller of Eq. 8.1, and thus its 
impact on u(t), depends on the values of the tuning parameters KC and τI. Because KC is in the numerator 
and τI is in the denominator, larger values of KC and smaller values of τI increase the influence of the 
integral term. 
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Figure 8.4 - Integral of error continually grows and shrinks as time passes 
 
 Integration is continual, growing as long as e(t) is positive and shrinking when the error is 
negative. At time t = 56 min, when the measured process variable crosses the set point the second time in 
Fig. 8.3 (or when the error changes sign for the second time in Fig. 8.4), the total value of the integral is 
(+120 − 28) = 92. When the dynamic event (transient) ends, the total integral is (+120 − 28 + 4) = 96.  
 Recognize that after the transient is over, the integral term can have a residual value even though 
e(t) is constant at zero. In Fig. 8.4, the transient has essentially died out yet the integral of the complete 
transient has a final or residual value of 96. As discussed in the next section, the consequence of this is 
that integral action enables the PI controller to eliminate offset.  
 
8.3  Advantages and Disadvantages to PI Control 
As discussed in Section 5.7, offset occurs in most processes under P-Only control when the set point 
and/or disturbance are at a value other than that used in the controller design, or more specifically, used to 
determine ubias. The big advantage of a PI controller is that it eliminates offset.  
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 Offset is eliminated with the PI controller of Eq. 8.1 because as long as there is any error (as long 
as e(t) is not zero), the integral term will grow or shrink in size, causing the controller output, u(t), to 
change. Changes in u(t) will only cease when y(t) equals ysetpoint (e(t) = 0) for a sustained period of time. At 
that point, the proportional term of Eq. 8.1 equals zero, and the integral term may have a residual value as 
just discussed. This residual value of integration, when added to ubias, in effect creates a new overall bias 
value that corresponds to the new level of operation.  

The ability to eliminate offset is a tremendous advantage. In fact, PI controllers are the most 
widely used of the PID family. There are disadvantages with the algorithm, however, including that: 
 

- two tuning parameters that interact in their influence must be balanced by the designer,  
- the integral term increases the oscillatory or rolling behavior of the closed loop system. 

 

Because the two tuning parameters interact with each other, it can be challenging to arrive at “best” tuning 
values once the controller is placed in automatic. 
 
8.4  Controller Bias From Bumpless Transfer  
As just discussed, if e(t) is not zero, the integral term will cause the controller output, u(t), to change. 
Changes in u(t) will only cease when e(t) equals zero for a sustained period of time. At that point, the 
integral term can have a residual value that, when added to ubias, in effect creates a new overall bias value 
corresponding to the current level of operation. 

Although integral action enables the controller to adjust to changes in operating level, the bias 
should still be properly initialized when the controller is put in automatic. Achieving this is surprisingly 
simple and requires no work on your part. When put in automatic with integral action enabled, most 
commercial controllers (including Loop Pro) initialize the bias to the current value of the controller 
output. This “bumpless transfer” feature means that when the control loop is closed, the bias is correct for 
the current level of operation. From that point forward, integral action enables the controller to track any 
changes in operating level. 
 
8.5  Controller Tuning From Correlations 
Designing any controller from the family of PID algorithms entails the following steps:  
 - specifying the design level of operation,  
 - collecting dynamic process data as near as practical to this design level,  
 - fitting a FOPDT model to the process data, and  
 - using the resulting model parameters in a correlation to obtain initial controller tuning values.  
As always, final tuning is performed by trial and error once the controller is online so loop performance 
matches that desired by the control designer. 
 The tuning correlations available in Design Tools for the PI controller are the Internal Model 
Control (IMC) relations. These are an extension of the popular lambda tuning correlations and include the 
added sophistication of directly accounting for dead time in the tuning computations. 
 The first step in using the IMC (lambda) tuning correlations is to compute,τC , the closed loop 
time constant. All time constants describe the speed or quickness of a response. The closed loop time 
constant describes the desired speed or quickness of a controller in responding to a set point change. 
Hence, a small τC (a short response time) implies an aggressive or quickly responding controller.  
  Loop Pro's Design Tools automatically computes a τC for moderate tuning, which can be 
changed to more aggressive or conservative values using software options.Moderate tuning provides a set 
point response that, while reasonably energetic, shows little or no overshoot. The closed loop time 
constants are computed using Eq. 8.4: 
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 Aggressive Tuning:   Cτ  is the larger of    0.1 Pτ   or   0.8 Pθ                 (8.4a) 
Moderate Tuning:   Cτ  is the larger of    1.0 Pτ   or   8.0 Pθ                              (8.4b) 

 Conservative Tuning:   Cτ   is the larger of    10 Pτ   or   80.0 Pθ              (8.4c) 
 
 

With τC computed, the PI correlations for IMC (lambda) tuning are 
 
 

                KC  = 
)( CP

p

PK
1

τθ
τ
+

    τI  = Pτ                (8.5) 

 
 
Another popular set of tuning correlations are the integral of time-weighted absolute error (ITAE) 

tuning correlations. We do not believe they are as dependable as the IMC correlations so they are not 
computed by Design Tools. They can easily be computed directly from the FOPDT model parameters, 
however. When set point tracking is the control objective, the ITAE tuning correlation is shown in Eq. 
8.6: 
 

 KC  = )/( -0.586 0.916
PP

PK
τθ  τI  = 
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                     (8.6) 

 
When disturbance rejection is the control objective, the ITAE tuning correlation is shown in Eq. 8.7: 
 
 

 KC  = )/( -0.859 0.977
PP

PK
τθ  τI  = )/(

0.674
0.680

PP
P τθ

τ
                   (8.7) 

 
The different correlations will yield different tuning values and your judgment is required in selecting 
which to use. If you are uncertain, remember that it is most conservative to start with the smallest gain and 
largest reset time as this will give the least aggressive controller.  

Final tuning is performed on-line and by trial and error until desired controller performance is 
obtained. If the process is responding sluggishly to disturbances and changes in the set point, the 
controller gain is too small and/or the reset time is too large. Conversely, if the process is responding 
quickly and is oscillating to a degree that makes you uncomfortable, the controller gain is too large and/or 
the reset time is too small.  

 
8.6  Set Point Tracking in Gravity Drained Tanks Using PI Control 
The design level of operation for this study is a measured level in the lower tank of 2.4 m while the 
pumped flow disturbance is at its expected value of 2.0 L/min. The control objective is to track set point 
steps in the range of 2.0 to 2.8 m. The process is currently under P-Only control and operations personnel 
will not open the loop for controller design experiments. Hence, closed loop set point steps are used to 
generate dynamic process data. 
 As shown in Fig. 8.5, the P-Only controller being used has a KC = 40 %/m and a bias value of 
55.2% (determined as the value of the controller output that, in open loop, causes the measured level 
in the lower tank to steady at the design value of 2.4 m when the pumped flow disturbance is at its  
expected value of 2.0 L/min). With data being saved to file, the dynamic testing experiment begins. 
Specifically, the set point is stepped up to 2.8 m, then down to 2.0 m, and finally back to the design 
level of 2.4 m (set point sequences of other sizes and durations would be equally reasonable).  
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Figure 8.5 – Set point step tests on gravity drained tanks under P-Only control 
 

Visual inspection of Fig. 8.5 confirms that the dynamic event is set point driven (as opposed 
to disturbance driven). Also, control action appears energetic enough such that the response of the 
measured process variable clearly dominates the noise.   
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Figure 8.6 – FOPDT fit of closed loop dynamic data generated in Fig.8.5 
 
 The dynamic data of Fig. 8.5 is read into Design Tools and fit with a FOPDT model. A plot 
of the model and closed loop process data is shown in Fig. 8.6. The model appears to be reasonable 
and appropriate based on visual inspection, thus providing the design parameters: 
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          Process Gain, KP = 0.094 m/% 
 

          Time Constant, τP   = 1.6 min   

                Dead Time, θP = 0.56 min 
 
We first compute the closed loop time constant. Here we choose aggressive tuning, which in the 
software is computed as:  
 

                 τC = larger of 0.1τP or 0.8θP = larger of 0.1(1.6) or 0.8(0.56) = 0.45 min.  
 

Substituting this closed loop time constant and the above FOPDT model parameters into the IMC 
tuning correlations of Eq. 8.5 yields the following tuning values: 
 
 

                            KC  = ⎟
⎠
⎞

⎜
⎝
⎛

+ 45.056.0
6.1

094.0
1

  =  16.9 %/min               τI  = 1.6 min 
 

A reverse acting controller is required because KC is positive. Integral with anti-reset windup logic 
(which is always desired, as discussed in Section 8.11) is enabled to complete the PI algorithm. 
Because integral action is being used, the bias value is not entered but rather is automatically 
initialized to the current value of the controller output at the moment the loop is closed. 
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Figure 8.7 – Performance of PI controller in tracking set point steps 

 
The performance of this controller in tracking set point changes is pictured in Fig. 8.7. The 

upper right corner of the plot shows; PID (P= RA, I= ARW, D= off, F=off), confirming that a reverse 
acting PI controller with anti-reset windup logic is being used. Although good or best performance is 
decided based on the capabilities of the process, the goals of production, the impact on downstream 
units and the desires of management, Fig. 8.7 exhibits generally desirable performance. That is, the 
process responds quickly, shows modest overshoot, settles quickly, and displays no offset. Compare 
this to Fig. 8.5, that shows P-Only performance for the same control challenge. 
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8.7  Disturbance Rejection in Heat Exchanger Using PI Control 
For this study, a constant measured exit temperature of 147°C is desired. The control objective is to reject 
disturbances that occur when the warm oil flow rate, normally about 10 L/min, occasionally spikes as 
high as 20 L/min. Using the open loop doublet test shown in Fig.6.6, appropriate FOPDT model 
parameters for this design are as follows:  
 

          Process Gain, KP = −0.90°C/% 
   

          Time Constant, τP = 1.1 min  
   

          Dead Time, θP = 0.9 min 
 
The ITAE for disturbance rejection tuning correlations of Eq. 8.7 are demonstrated here, though they 
are not our first choice for industrial applications. Substituting the above FOPDT model parameters 
into these correlations yield the tuning values: 
 

       KC  = )1.1(0.9
90.0

0.859 0.977-/
−

   =   − 1.2 %/°C                τI  = )1.1(0.9
0.674

1.1 0.680/     =  1.4 min 

 
A direct acting controller is required because KC is negative. Integral with anti-reset windup logic is 
enabled to complete the PI algorithm. Because integral action is being used, the bias value is 
automatically initialized to the current value of the controller output at the moment the loop is closed. 
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Figure 8.8 - Disturbance rejection performance of heat exchanger under PI control 

 
 Figure 8.8 shows the performance of this controller in rejecting step changes in the warm oil 
disturbance flow rate. The set point is held constant throughout the experiment at the design operating 
level of 147°C. When the disturbance flow rate steps from 10 L/min up to 20 L/min, the PI controller 
succeeds in returning the measured process variable to set point, thus eliminating offset. 
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8.8  Interaction of PI Tuning Parameters 
As mentioned, one disadvantage of the PI controller is that there are two tuning parameters to adjust and 
difficulties can arise because these parameters interact with each other. Fig.8.9 shows a tuning map that 
illustrates how a typical set point response might vary as the two tuning parameters are changed.  
 The center of Fig. 8.9 shows a set point step response that is labeled as the base case 
performance. It is important to recognize that this base case plot will not be considered by some to be the 
"best" performance. What is best must be determined by the operator or engineer for each 
implementation. Some require no overshoot while others will tolerate some overshoot in exchange for 
a faster set point response. In any event, the grid shows how a set point step response changes as the two 
tuning parameters are doubled and halved from a base (here defined as desired) tuning. 
 The plot in the upper left of the grid shows that when gain is doubled and reset time is halved, the 
controller produces large, slowly damping oscillations. Conversely, the plot in the lower right of the grid 
shows that when controller gain is halved and reset time is doubled, the response becomes sluggish. This 
chart is called a tuning map because, in general, if a controller is behaving poorly, you can match the 
performance you observe with the closest picture in Fig. 8.9 and obtain guidance as to the appropriate 
tuning adjustments required to move toward your desired performance. 
 

PI Controller Tuning Map 
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Figure 8.9 – How PI controller tuning parameters impact set point tracking performance 
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8.9  Reset Time Versus Reset Rate 
Different manufacturer of controllers use different names for the tuning parameters. As discussed in 
Chapter 5, some use proportional band rather than controller gain. Also, some use reset rate instead of 
reset time, shown in Eq. 8.8 below: 

        Reset Rate = 
Iτ

1                  (8.8) 

 
Reset rate has units of 1/time or sometimes repeats/minute. In any case, it is important to know your 
manufacturer before you start tuning any controllers! 
 
8.10  Continuous (Position) Versus Discrete (Velocity) Form 
As expressed in Eq. 8.1, the continuous form of the PI controller is: 
 

                  u(t) = ubias + ∫τ
dtte

K
teK

I

C
C )( + )(                           (8.9) 

 
This is sometimes called the position form because the computed u(t) is a specific value in the range 
from 0-100%. When the final control element is a process valve, this controller output in essence is 
specifying the actual position between opened and closed that the valve should take. 

The first step in deriving the discrete form is to take the time derivative of the continuous 
form (the time derivative, or rate of change, of a position is a velocity. Thus, the discrete form of the 
PI controller is sometimes called the velocity form). Taking the derivative with respect to time yields 
the following: 

 

    )( + )( +)(

I

bias te
K

dt
tedK

dt
ud

dt
tud C

C τ
=             (8.10) 

 
Since ubias is a constant, then d ubias/dt = 0. Assigning finite difference approximations for the continuous 
derivatives, Eq. 8.10 becomes the following: 
 

            i
I

Cii
C e

K
t

ee
K
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⎞
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⎝

⎛
∆
−

=
∆
∆ −  + 1                         (8.11) 

 
where ei is the current controller error and ei−1 is the controller error from the last sample. Assigning 
loop sample time as T = ∆t, then the discrete or velocity PI controller form results in Eq, 8.12, shown 
below: 
 

          1+1 −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
τ

=∆ iCi
I

C eKeTKu                                      (8.12) 

 
This discrete form of the PI controller computes a change in valve position rather than the absolute 
position itself. Wherever the valve (final control element) position happens to be, the ∆u instructs the 
valve in what direction and by how much to change. 

As long as the controller output never reaches the maximum (100%) or minimum (0%) value, 
the continuous and discrete forms of the PI controller behave identically (see the next section on reset 
windup to learn more). 
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8.11  Reset Windup 
As long as an error persists, the integral term in Eq. 8.9 will continue to grow. If an error is large 
enough and persists long enough, it is mathematically possible for the integral term to grow so large 
and its contribution to ubias to become so great that the final control element saturates or reaches a 
physical limit of fully open/on or fully closed/off. If this extreme position is still not sufficient to 
eliminate the error, the mathematics of Eq. 8.9 permit the integral term to grow yet more.  
 When the computed u(t) exceeds the physical capabilities of the final control element because 
the integral term has reached a huge value, the condition is known as windup. Because windup is 
associated with the integral term, it is often referred to as reset windup. Once this condition has 
occurred, the controller losses the ability to regulate the process. If and when the error eventually 
changes sign and the integral term "unintegrates" or shrinks sufficiently so that the final control 
element is no longer saturated, control action can then resume. 
 The discrete (velocity) form of Eq. 8.12 will not windup because the continuous integral is 
eliminated with the introduction of the time derivative in Eq. 8.10. Thus, using the discrete form of 
Eq. 8.12 not only eliminates the bias term, but also solves the windup problem.  

Unfortunately, the usefulness of Eq. 8.12 in industrial practice is limited because the form 
suffers problems when derivative action is included. When taking the derivative of the full PID 
algorithm as shown in Eq. 8.13, a derivative of the derivative term yields a second derivative. A 
numerical second derivative applied to data that contains even modest noise produces nonsense 
results. 

 

   2

2

I

bias )()( + )( +)(
dt

tedKte
K

dt
tedK

dt
ud

dt
tud

DC
C

C τ+
τ

=                        (8.13) 

 
Hence, most industrial controllers employ the continuous PID algorithm and include jacketing logic 
to halt integration when the controller output reaches a maximum or minimum value.  

Modern controllers will not suffer from reset windup. It is an old problem that has long been 
solved. Beware if you program your own controller, however. Reset windup is a trap that novices fall 
into time and again. 
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9.  Evaluating Controller Performance 
  
9.1  Defining “Good” Controller Performance 
Consider that a bioreactor might not be able to tolerate sudden changes in operating conditions 
because the fragile living organisms could die. In such a process, it would be desirable to design the 
controllers so that the measured process variables respond slowly when counteracting disturbances or 
working to track changes in set point.  
 On the other hand, designers of a concentration control application where the stream then 
flows into a mixing tank may seek a very rapid response to set point changes. They may be willing to 
tolerate the slowly damping oscillations in the measured concentration that result from such 
aggressive control action because the averaging effect of the mixing tank minimizes the ultimate 
impact on product quality. In this situation, an aggressive controller that causes significant oscillation 
in the measured process variable may be considered acceptable or even good performance.  
 As these examples illustrate, different applications can have quite different definitions of 
“good” closed loop performance. Ultimately, it is the operator or engineer who defines what is good      
or best for a particular application. To make this determination, he/she should consider the following: 
 

    - goals of production,  
    - capabilities of the process,  
    - impact on down stream units, and  
    - desires of management. 
 

9.2  Popular Performance Criteria 
There are popular measures or criteria used in industrial practice to describe closed loop performance. 
This permits an orderly comparison of different process response shapes. As shown in Fig. 9.1, 
certain features of the closed loop response are assigned the definitions: 
 
 A =  Size of the set point step  
 B′ =  Size of the first peak above the new set point  
  B = Size of the first peak above the new steady state 
 C  =  Size of the second peak above the new steady state 
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Figure 9.1 - Process response to a set point change with labels indicating response features 
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And as shown in Fig. 9.2, the time of occurrence of certain events, such as the time when the 
measured process variable first crosses the new set point or reaches its first peak are also used to 
describe controller performance.  
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Figure 9.2 - Process response to a set point change with labels indicating response features 
 
Another popular criteria is settling time, or the time required for the measured process variable to first 
enter and then remain within a band whose width is computed as ± 5% (or 3 % or 10 %) of the total 
change in y(t), labeled as ∆y(t) in Fig. 9.2. These popular performance criteria are summarized: 
 

   Peak Overshoot Ratio (POR) = B′/A 
 

   Decay Ratio = C/B 
  

   Rise Time = trise 
 

   Peak Time = tpeak 
 

   Settling Time = tsettle 
 
Popular values for these criteria include a 10% peak overshoot ratio, a 25% decay ratio and a settling 
time band of ± 5%. Also, these criteria are not independent. A process with a large decay ratio will 
likely have a long settling time. A process with a long rise time will likely have a long peak time. 
 

Example: Gravity Drained Tanks 
As long as a closed loop response looks similar to the classical pattern depicted in Fig. 9.1 and 
9.2, then computing the performance criteria is straightforward. Because of offset, the P-Only set 
point response of the gravity drained tanks shown in Fig. 9.3 does not possess this classic pattern.  
 Here, the set point is stepped up from 2.4 m to 4.4 m.  The P-Only controller gain is KC = 40 
m/% and the controller bias is ubias = 55.2 %. Because of offset, the measured process variable 
does not settle at the set point, but rather settles at a final steady state of about 4.0 m. 
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Figure 9.3 - Performance of Gravity Drained Tanks under P-Only control 
 
From Fig. 9.3, we read the following information: 
 

 - the set point step occurs at about time t = 4.0 min 
 - the measured process variable first crosses the new set point at about time t = 5.7 min 
 - the first process variable peak (“a” on plot) occurs at about time t = 6.2 min 
 
 - The steady state change in y(t), or ∆y(t), is (4.0 − 2.4 m) = 1.6 m 
 - The 5% settling time band is (2.4 + 0.95(1.6 m)) = 3.9 m, and (2.4 + 1.05(1.6 m)) = 4.1 m 
 - the process variable first enters and then remains within the settling time band (“c” on plot) 
                  at about time t = 12.7 min 
 
 - Size of set point step is (4.4 − 2.4 m) = 2.0 m 
 - Size of first peak over new set point is (4.7 − 4.4 m) = 0.3 m 
 - Size of first peak (“a” on plot) over new steady state is (4.7 − 4.0 m) = 0.7 m 
 - Size of second peak (“b” on plot) over new steady state is (4.3 − 4.0) = 0.3 m 
 
Using this data, the performance criteria are then computed as such: 
 

 - Peak Overshoot Ratio (POR) = (0.3/2.0)⋅100% = 15% 
  

 - Decay Ratio = (0.3/0.7)⋅100% = 43% 
  

 - Rise Time = (5.7 − 4.0 min) = 1.7 min  
 

 - Peak Time = (6.2 − 4.0 min) = 2.2 min 
 

 - Settling Time = (12.8 − 4.0 min) = 8.8 min 
 
As discussed at the beginning of this chapter, whether or not these criteria qualify the controller 
performance as “good” is subjective and is left to the opinion of the designer. 
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10.  Derivative Action, Derivative Filtering and PID Control 
  

10.1  Ideal and Non-interacting Forms of the PID Controller 
Like the PI controller, PID computes an output signal to the final control element based on tuning 
parameters and the controller error, e(t). As before, u(t) is the controller output and ubias is the controller 
bias. Controller gain, KC, and reset time, τI, are tuning parameters. A new tuning parameter, τD, provides 
weight to the derivative term, has units of time (so it is always positive), and is called the derivative time. 
Larger values of τD provide a larger weighting to (increase the influence of) the derivative term. 
 Vendors offer different forms of the PID algorithm. We explore here the two most popular forms 
and learn that they are identical in capability, but users must use caution because they require slightly 
different correlations for tuning. Because there are three tuning parameters, these forms are commonly 
called three mode controllers. 
 
Ideal (Non-interacting) PID Form 
One form is referred to under a variety of names including the ideal, non-interacting and ISA algorithm. 
We will henceforth call this the ideal form. It is expressed in Eq. 10.1: 
 
 

                         
dt

tdeKdtte
K

teKutu DC
I

C
C

)()( + )()( bias τ+
τ

+= ∫            (10.1) 

 
 

The first three terms to the right of the equal sign in Eq. 10.1 are identical to the PI controller of Eq. 8.1. 
The derivative mode of the PID controller is an additional and separate term added to the end of the 
equation that considers the derivative, or rate of change, of the error as it varies over time. 
 We show the Laplace transfer function form because it helps us understand how the names 
for the alogrithms evolved. The Laplace form of the ideal, non-interacting PID controller is expressed 
in Eq. 10.2: 
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As is evident in Eq. 10.1 and Eq. 10.2, each term sits alone and does not interact with any of the other 
terms in the algorithm. 
 
Interacting PID Form 
The other PID form is referred to interchangeably as the interacting, series and industrial form. We will 
refer to this as the interacting PID form. It is expressed as follows: 
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The Laplace form of the interacting PID algorithm reveals why it is so named. As Eq. 10.4 shows, the 
derivative action is introduced as a separate term that is multiplied across the PI terms.  
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The impact of this construction seems to fall on the proportional action when expressed in the time 
domain of Eq. 10.3 because the proportional term is multiplied by a combination of all three tuning 
parameters. As we show later in this chapter, however, all three tuning parameters, KC, τI, and τD, 
require slightly different values to make the performance of the ideal and noninteracting forms 
equivalent. 
 
10.2  Function of the Derivative Term 
As we have discussed, the proportional term considers how far y(t) is from ysetpoint at any instant in time. It 
adds or subtracts from ubias based on the size of e(t) only at time t. As e(t) grows or shrinks, the amount 
added to ubias grows or shrinks immediately and proportionately. 
 The integral term addresses how long and how far y(t) has been away from ysetpoint. The integral 
term integrates or continually sums up e(t) over time. Thus, even a small error, if it persists, will have a 
sum total that grows over time and the integral term contribution added to ubias will similarly grow.  
 The derivative term considers how fast e(t) is changing at an instant in time. The derivative 
computation yields a rate of change or slope of the error curve. An error that is changing rapidly yields a 
large derivative regardless of whether a dynamic event has just begun or if it has been underway for some 
time. A large derivative (a rapidly changing error) causes the derivative term to have a large impact on the 
value added to ubias, and thus the controller output, u(t). It is interesting to note that the derivative 
computation does not consider whether e(t) is positive or negative, just whether it is changing rapidly. 
 
10.3  Derivative on Measurement is Used in Practice 
Before exploring the contribution of the derivative term to the action of a PID controller, consider that if 
ysetpoint is constant, then: 

             
[ ]

dt
tdy

dt
tyyd

dt
tde setpo )()()( int −=

−
=                           (10.5) 

 
That is, except for a negative sign, Eq. 10.5 shows that the derivative (or slope or rate of change) of the 
controller error is the same as the derivative (or slope or rate of change) of the measured process variable, 
y(t). 
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Figure 10.1 – The trace of e(t) and y(t) are reflections except when set point changes 
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 Figure 10.1 provides a visual appreciation of this by showing a set point response curve two 
ways. The left plot shows the error trace, e(t), after a set point step. The right plot shows the measured 
process variable trace, y(t), for the same event. After the set point step, the changing slope of e(t) 
identically tracks the slope of y(t) except that they are reflections of one another (the derivatives have 
opposite signs).  
 The big difference is that the left plot in Fig. 10.1 shows a momentary vertical spike in e(t) at the 
instant that ysetpoint changes. The derivative or slope of this spike in error, de(t)/dt, in theory approaches 
infinity and in the real world will be at least a very large value. If τD is large enough to provide any 
meaningful weight to the derivative term, this very large derivative value will cause a large and sudden 
manipulation in u(t). This large manipulation, referred to as derivative kick, is almost always 
undesirable.  
 From the y(t) trace to the right in Fig. 10.1, we see that y(t) itself does not go through this 
dramatic vertical change in slope. Though set points can change instantly causing the computed error to 
change in kind, physical processes change in a more gradual and continuous fashion. Thus, y(t) will not 
display dramatic vertical changes in slope when ysetpoint changes , but  will trace a gradual and continuous 
dynamic (assuming that loop sample time is T ≤ 0.1τP  to adequately track the process behavior). 
 Because derivative on error behaves identically to derivative on measurement at all times except 
at those moments when ysetpoint changes, and when the set point does change, the derivative on error 
provides information we don’t want our controller to use, we substitute Eq. 10.5 into Eq. 10.1 and Eq. 
10.3 to obtain the PID with derivative on measurement controller.  
 

 Ideal (Non-interacting) PID with Derivative on Measurement: 
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 Interacting PID with Derivative on Measurement: 
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Because the performance of Eq. 10.6 and Eq.10.7 is the same as Eq. 10.1 and Eq. 10.2 respectively 
except they do not “kick” when the set point changes, PID with derivative on measurement is the 
preferred algorithm in practical applications. 
 
10.4  Understanding Derivative Action 
The derivative dy(t)/dt, as illustrated in Fig. 10.2, is computed as the slope of y(t). During a set point 
response transient, the slope is large and positive when the measured process variable trace is increasing. 
When y(t) is decreasing, the derivative (slope) is negative. And when the measurement goes through a 
peak or a trough, there is a moment in time when the derivative is zero. 
 For discussion purposes, assume that KC is positive and that τD (always positive) is large enough 
to provide meaningful weight to the derivative term (after all, if τD is zero, the derivative term has no 
influence regardless of the slope of the measured process variable). The negative sign in front of the 
derivative term in Eq. 10.6 and Eq. 10.7 means that the control action contribution from the derivative 
will be opposite to the sign of the slope. Thus, when dy(t)/dt is large and positive, the derivative term has a 
large influence and seeks to decrease the amount added to ubias. Conversely, when dy(t)/dt is negative, the 
derivative term seeks to increase the amount added to ubias. 
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Figure 10.2 - A set point transient produces y(t) slopes that are positive, negative or zero 
 
  It is interesting to note that the derivative term does not consider whether the measurement is 
heading toward or away from the set point (whether e(t) is positive or negative). The only consideration is 
whether the measurement is heading up or down and how quickly. At the peak of the transient in Fig. 
10.2, dy(t)/dt = 0 and the derivative term momentarily makes no contribution to control action. The 
proportional and integral terms definitely influence u(t) at that point in time, however. 
 
10.5  Advantages and Disadvantages of PID Control 
As we have discussed in previous chapters, offset occurs in most processes under P-Only control when 
the set point and/or disturbances are at values other than that used in the controller design, or more 
specifically, used to determine ubias. The benefit of the PI controller is that integral action works to 
eliminate offset because as long as there is any error, the integral term will grow or shrink in influence and 
cause u(t) to change. The integration ceases only when y(t) equals ysetpoint for a sustained period of time. A 
disadvantage of the integral term is that it increases the oscillatory or rolling behavior of y(t). Also, the 
two tuning parameters of the PI controller interact in their influence and it is sometimes difficult to 
determine what action to take if controller performance is not as desired. 
 The big benefit of the derivative term is that it works to decrease oscillations in y(t) because it has 
its largest influence when y(t) is changing rapidly. Thus, the three terms of a properly tuned PID controller 
can work together to provide rapid response to error (proportional term), eliminate offset (integral term), 
and minimize oscillations in the measured process variable (derivative term).  
 Unfortunately, there are significant disadvantages to including derivative action in your 
controller. We just mentioned the challenge of balancing two interacting tuning parameters for PI control. 
A three mode PID algorithm has three tuning parameters that interact and must be balanced to achieve 
desired controller performance. Indeed, tuning a PID controller can be quite challenging as it is often not 
at all obvious which of the three parameters is most responsible for an undesirable performance. 
 A second disadvantage relates to the uncertainty in the derivative computation for processes that 
have noise in the measured process variable. This problem and a solution using a derivative filter is 
explored in more detail later in Section 10.11. 
 
10.6  Three Mode PID Tuning From Correlations 
Designing any controller from the family of PID algorithms entails the following steps:  
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 - specifying the design level of operation,  
 - collecting dynamic process data as near as practical to this design level,  
 - fitting a FOPDT model to the process data, and  
 - using the resulting model parameters in a correlation to obtain initial controller tuning values.  
 

As always, final tuning is performed by trial and error once the controller is online so loop performance 
matches that desired by the control designer. 
 The tuning correlations available in Design Tools for the PID controller are the Internal Model 
Control (IMC) relations. These are an extension of the popular lambda tuning correlations and include the 
added sophistication of directly accounting for dead time in the tuning computations. 
 The first step in using the IMC (lambda) tuning correlations is to compute,τC , the closed loop 
time constant. All time constants describe the speed or quickness of a response. The closed loop time 
constant describes the desired speed or quickness of a controller in responding to a set point change. 
Hence, a small τC  (a short response time) implies an aggressive or quickly responding controller.  
  Loop Pro's Design Tools automatically computes a τC for moderate tuning, which can be 
changed to more aggressive or conservative values using software options.Moderate tuning provides a set 
point response that, while reasonably energetic, shows little or no overshoot. The closed loop time 
constants are computed using Eq. 10.8: 
 
 

 Aggressive Tuning:   Cτ  is the larger of    0.1 Pτ   or   0.8 Pθ               (10.8a) 
Moderate Tuning:   Cτ  is the larger of    1.0 Pτ   or   8.0 Pθ               (10.8b) 

 Conservative Tuning:   Cτ   is the larger of   10 Pτ   or   80 Pθ            (10.8c) 
 

With τC computed, three mode PID correlations for IMC (lambda) tuning are as follows: 
 
         KC           Iτ                 Dτ  
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 As mentioned earlier, all three tuning parameters are different for the ideal (non-interacting) and 
interacting PID forms. Thus, it is essential that you know the PID form used by your manufacturer when 
computing tuning values for a real implementation.  
 Like with all tuning correlations, your judgment is required for final tuning. Remember that the 
most conservative (least aggressive) controller uses a smaller gain, larger reset time and smaller derivative 
time.  
 
10.7  Converting From Interacting PID to Ideal PID 
By setting the individual terms of the ideal PID form of Eq. 10.1 (or Eq. 10.6) to those of  the interacting 
PID form of Eq. 10.3 (or  Eq. 10.7) and solving for the ideal tuning parameters yields conversion relations 
between the two forms as such: 
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 These conversion relations indicate that the ideal and non-interacting PID forms will provide 
identical performance if the values of the individual tuning parameters are properly specified. And thus it 
is not surprising that by applying Eq. 10.11 to the interacting PID tuning correlations of Eq. 10.10 indeed 
yields the ideal PID correlations of Eq. 10.9. 
 
10.8  Exploring Set Point Tracking Using PID Control 
Building on the PI control set point tracking study for the gravity drained tanks presented in Chapter 8, we 
recall that the design level of operation is a measured level in the lower tank of 2.4 m while the pumped 
flow disturbance is at its expected value of 2.0 L/min. The control objective is to track set point steps in 
the range of 2.0 to 2.8 m. As detailed in Section 8.6, FOPDT dynamic model parameters fit to controller 
output driven data that was collected at the design level of operation are as follows: 
 

          Process Gain, KP = 0.094 m/% 
 

          Time Constant, τP = 1.6 min   
 

               Dead Time, θP = 0.56 min 
 
 

We first compute the closed loop time constant. Here we choose aggressive tuning:  
 
 

          τC = larger of 0.1τP or 0.8θP = larger of 0.1(1.6) or 0.8(0.56) = 0.45 min.  
 
 

Substituting this closed loop time constant and the above FOPDT model parameters into the 
correlations of Eq. 10.9 and Eq. 10.10 yields the following tuning values: 
 

         PID Ideal              KC  =  27.5 %/m τI  = 1.9 min      τD  = 0.24 min 
         PID Interacting       KC  =  23.5 %/m τI  = 1.6 min      τD  = 0.28 min 
 
The performance of these PID controllers are compared in Fig. 10.3 to an IMC tuned PI controller as 
presented in Chapter 8. Those tuning values were as follows:   
 

         PI control    KC  = 16.9 %/m         τI  = 1.6 min 
 

The result of the set point tracking comparison is shown in Fig. 10.3 (note that the "Advanced" box 
must be checked in Loop Pro's controller design menu to access the interacting PID form).  
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Figure 10.3 – Comparison of PI and PID controller performance in tracking set point steps 
 
 The most obvious difference between PI and PID control is that derivative action causes the 
noise in the measured process variable to be amplified and reflected in the controller output signal. 
Such extreme control action will wear a mechanical final control element, requiring continued and 
expensive maintenance. 
 Closer scrutiny of Fig. 10.3 reveals that derivative action impacts the oscillatory behavior of 
the measured process variable. Specifically, the PID controller not only achieves a faster rise time 
(because KC is bigger), but also a smaller peak overshoot ratio and faster settling time because of 
derivative action.  
 Finally, Fig. 10.3 establishes that the ideal PID and interacting PID algorithms can produce 
identical control performance. Recall that each form was tuned in this example using its own IMC 
tuning correlations of Eq.10.9 and Eq. 10.10.  

 
10.9  Derivative Action Dampens Oscillations 
In Fig. 10.4 we further explore this observation that derivative action dampens oscillations in the 
measured process variable. To facilitate this study, measurement noise is set to zero to eliminate its 
influence on the control signal. This lets us isolate derivative time, τD, as a tuning parameter and study its 
impact on set point tracking performance.  
 The middle plot in Fig. 10.4 shows the set point tracking performance of a PID controller tuned 
using IMC tuning and the standard τC value of Eq. 10.8. For all three plots, KC and τI  remain constant. 
The plot to the left shows how the oscillating nature of the response increases as derivative action is 
decreased by half. The plot to the right shows that when derivative action is too large, it inhibits rapid 
movement in the measure process variable, causing the rise time and settling time to lengthen.  
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Figure 10.4  - How derivative time,τD, impacts PID set point tracking performance 
 
 
10.10  Measurement Noise Hurts Derivative Action 
We noted in Fig. 10.3 that derivative action causes measurement noise to be amplified and reflected 
in the controller output signal. The reason for this extreme control action, as illustrated in Fig. 10.5, is 
that a noisy signal produces conflicting derivatives as the slope appears to dramatically alternate direction 
at every sample. 
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Figure 10.5 – Measured process variable noise causes uncertainty in the derivative computation 
 
As noted in Fig. 10.5, the derivative can alternate between a large increasing slope followed by a large 
decreasing slope, sample after sample. The derivative mode thus reflects this noise as it computes a series 
of alternating and compensating controller actions. The degree to which the noise is amplified in the 
controller output depends on the size of τD. 



 

94 
 

Practical Process Control® by Douglas J. Cooper 
Copyright © 2005 by Control Station, Inc. 

All Rights Reserved 

 Figure 10.6 illustrates an additional problem that measurement noise can cause with derivative 
action when the level of operation is near a controller output constraint (either the maximum value, umax, 
or the minimum value, umin). The PID tuning values in Fig. 10.6 are constant throughout the experiment. 
As indicated on the plot, measurement noise is increased from small to medium to large in three set point 
tracking tests. (The terms “small” and “large” are used to indicate relative levels of noise. Please do not 
use this plot as a standard for determining if noise in your process is small or large.) 
 As long as measurement noise causes the derivative to alternate equally between suddenly 
increasing and suddenly decreasing, and the controller output can reflect this “equality in randomness” 
unimpeded, then controller performance is reasonably consistent in spite of significant noise. A 
comparison of the small noise and medium noise cases shows the controller output is not hitting a 
constraint and set point performance is consistent. 
 If a constraint inhibits the controller output from the “equality in randomness” symmetry, causing 
it to become skewed or off center, then controller performance degrades. This is demonstrated in Fig. 10.6 
in the right most set point steps for the case where measurement noise is large. For this case, the controller 
output signal becomes so active that it hits the maximum controller output value, umax. By constraining 
u(t), the controller output loses its symmetry and controller performance is affected as the measured 
process variable temporarily deviates from set point. 
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Figure 10.6 – When controller output becomes constrained, controller performance degrades 
 
10.11  PID With Derivative Filter Reduces the Impact of Noise 
To improve performance when there is noise or random error in the measured process variable, the 
PID control algorithm can be modified with the addition of a derivative filter. The filter works to limit 
the large controller output moves that derivative action causes as a result of measurement noise. Even 
if noise is not causing performance problems, the derivative filter can help reduce the constant 
controller output fluctuations that can lead to wear in the final control element. 
 As with three mode PID, vendors offer different forms of a four mode PID with derivative 
filter controller. We explore the two most popular forms here. While not shown, the controllers are 
typically implemented in a "derivative on measurement" form analogous to Eq. 10.6 and Eq. 10.7. 
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Ideal (Non-interacting) PID with Filter Form 
The ideal or non-interacting PID with derivative filter algorithm is expressed as: 
 

                      
dt

tdu
dt

tdeKdtte
K

teKutu DDC
I

C
C

)()()()()( bias αττ
τ

−+++= ∫               (10.12) 

 

The first four terms on the right side of Eq. 10.12 are identical to the PID controller of Eq. 10.1. The last 
term on the right side of the equation is the filter term that subtracts a derivative or rate of change in the 
controller output, u(t), from the four PID terms. 
  When the first four PID terms compute large and sudden changes in u(t) as might arise from 
noise in the process variable (see Fig. 10.5), then the rate of change (derivative) of the controller 
output will also become large. This controller output derivative is scaled by ατD and subtracted from 
the computation as shown in Eq. 10.12. If the derivative of u(t) is large, then in effect, the final 
computed controller output change is moderated (or filtered). The actual change in u(t) sent to the 
final control element is smaller than it otherwise would be with the traditional three mode PID form. 
The size of the filter constant, α, dictates how much of each change is filtered out of the final u(t) 
signal. 
 The Laplace form of the ideal, non-interacting PID with derivative filter controller is shown 
in Eq. 10.13: 
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This form shows that the filter term is multiplied across, and thus affects the computations of, all 
terms of the three mode PID algorithm. 
 
Interacting PID with Filter Form 
The interacting or series form of the four mode PID with derivative filter form is expressed as 
follows: 
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The same filtering computation just discussed for the ideal form applies here. The Laplace form of the 
interacting PID with derivative filter algorithm is expressed as follows:  
   

                                               ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ατ

+τ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
τ

+==
1

111
)(
)()(

s
s

s
K

sE
sUsG

D

D

I
CC                                 (10.15) 

 
The interacting form is also commonly referred to as the “lead/lag” form. 
 
10.12  Four Mode PID Tuning From Correlations 
The derivative filter constant, α, becomes a fourth tuning parameter, creating a yet more challenging 
tuning problem. The tuning correlations available in Design Tools are the IMC (lambda) relations that 
use the closed loop time constant,τC.. Again, as computed in Eq. 10.8, Loop Pro offers both "standard" 
and "conservative" τC values. With τC computed, four mode PID correlations for IMC (lambda) tuning are 
as follows: 
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 All four tuning parameters are different for the ideal (non-interacting) and interacting PID forms. 
As stated before, know the PID form used by your manufacturer when computing tuning values for a real 
implementation. And again, as with all tuning correlations, your judgment is required for final tuning. 
 
10.13  Converting From Interacting PID with Filter to Ideal PID with Filter 
Setting the individual terms of the ideal four mode PID form of Eq. 10.12 to those of the interacting form 
of Eq. 10.14 and solving for the ideal tuning parameters yields conversion relations between the two 
forms, shown in Eq. 10.18: 
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Based on these conversion relations, we conclude as we did with the three mode forms that the four mode 
ideal and non-interacting PID controllers will provide identical performance if the values of the individual 
tuning parameters are properly specified. And applying Eq. 10.18 to the interacting PID tuning 
correlations of Eq. 10.17 indeed yields the ideal PID correlations of Eq. 10.16. 
 
10.14  Exploring Set Point Tracking Using PID with Derivative Filter Control 
We repeat the set point tracking study for the gravity drained tanks presented in section 10.8. Again,  
 
          Process Gain, KP = 0.094 m/% 
 

          Time Constant, τP = 1.6 min   
 

               Dead Time, θP = 0.56 min 
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and the closed loop time constant using aggressive tuning:  
 
                                         τC = larger of 0.1τP or 0.8θP = 0.45 min.  
 
Substituting this closed loop time constant and the above FOPDT model parameters into the 
correlations of Eq. 10.16 and Eq. 10.17 yields the following tuning values: 
 
         PID Ideal              KC  =  19.8 %/m           τI  = 1.9 min          τD  = 0.24 min           α = 0.52 
 

         PID Interacting       KC  =  16.9 %/m           τI  = 1.6 min          τD  = 0.28 min           α = 0.44 
 
 
The performance of these PID controllers are compared in Fig. 10.3 to an IMC tuned PI controller as 
presented in Chapter 8. Those tuning values were as follows:   
 
          PI control    KC  = 16.9 %/m         τI  = 1.6 min 
 
 
 The result of the set point tracking comparison is shown in Fig. 10.7 (note that the 
"Advanced" box must be checked in Loop Pro's controller design menu to access the interacting PID 
form and the derivative filter option).  
 Comparing the filtered PID of Fig. 10.7 to the unfiltered results of Fig. 10.3 reveals the 
dramatic capability of the filter to temper the actions of the controller output signal. The ability of 
derivative action to achieve a faster rise time, smaller peak overshoot ratio and faster settling time is 
similar to that shown in Fig 10.3, implying that the filter does not necessarily impact performance.  
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Figure 10.7 – Comparing PI and PID with derivative filter in tracking set point steps 
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 On the other hand, because the derivative filter works to limit sudden changes in the 
controller output signal, a large filter can reduce the benefits of derivative action. Ideally, the filter 
constant should be just large enough to contain the erratic fluctuations in the controller output signal, 
but not so much as to degrade the overall performance of the controller. 

 Finally, Fig. 10.7 reinforces the observation of Fig. 10.3 that the ideal PID with filter and 
interacting PID with filter algorithms can produce identical control performance. Recall that each 
form was tuned in this example using its own IMC tuning correlations of Eq.10.16 and Eq. 10.17.  
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Practical Theory 

11.  First Principles Modeling of Process Dynamics 
 
11.1  Empirical and Theoretical Dynamic Models 
Dynamic models describe how the behavior of a process changes with time. Empirical dynamic 
models are essentially curve fits of observed process behavior, and as such, they can be developed 
relatively quickly. To create an empirical model, a general dynamic model form is fit to process data 
collected during an experimental study. We did this frequently in previous chapters when we fit the 
first order plus dead time (FOPDT) model to data to compute controller tuning values. 
 Empirical models can describe dynamic process data quite accurately. The disadvantage of 
empirical modeling is that because it is a data fit and not a process description, extrapolation beyond 
the bounds of the data used to fit the model is speculative. The mismatch between model predictions 
and actual process behavior will likely increase as the extrapolation increases. 
 Theoretical dynamic models are derived from first principles. Because they are based on 
theory, they often can be extrapolated beyond the bounds of available data with some confidence. 
This makes them useful for exploring a wide range of operating policies and control strategies. 
Studies using theoretical models can be performed quickly, safely and inexpensively. They can also 
form the basis of a training simulator. For example, Loop Pro’s Case Studies simulations are based on 
theoretical models. The disadvantage of theoretical models is that they can be substantially more 
challenging and time consuming to develop compared to empirical models. 
 
11.2  Conserved Variables and Conservation Equations 
First-principles (theoretical) dynamic models result from conservation equations. Conserved variables 
include: 
 - mass 
 - mass of component i  (a species balance) 
 - energy 
 - momentum 
 
Balances are created by defining a boundary around the process and then computing the following: 
 

       Accumulation = In − Out + Generation − Consumption  
 
Note that level, temperature and process variables other than those listed above are not conserved.  
  As developed below, a model describing the dynamic (or time-dependent) behavior of liquid 
level in a tank begins with a mass balance. The specific assumptions of constant liquid density and 
constant tank cross-sectional area enable the mass balance to yield a dynamic equation describing 
liquid level. Similarly, a later example shows that a dynamic temperature model begins with an 
energy balance.  
 When deriving a process model, regardless of the final application, good engineering practice 
dictates that we include the following in the derivation: 
    - a picture of the process with appropriate labels, 
    - units used in the model, 
    - assumptions used in the derivation, 
    - step-by-step details of the derivation, 

- a final dynamic model differential equation including boundary conditions. 
 
These organizational details help prevent mistakes while also documenting the intended use and 
application of your work. Also, others reviewing your work will benefit from the documentation, and 
you will also if you revisit your derivation at a later date. 
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11.3  Mass Balance on a Draining Tank 
The process pictured in Fig. 11.1 is a tank that has liquid flowing in the top and freely draining out of 
a hole in the bottom. As the variable labels indicate, the flow rate in and out can change with time. 
The cross section of the tank is constant with height, so the volume of the tank at any time t can be 
related to the height of the tank. 
 Following good engineering practice, we begin with a picture, units and assumptions used, 
followed by step-by-step details of the derivation. 
 
Picture: 

F0(t), ρ0(t)

F1(t), ρ1(t)

V(t), ρ(t)

AC

h(t)

F0(t), ρ0(t)

F1(t), ρ1(t)

V(t), ρ(t)

AC

h(t)

 
 

Figure 11.1 - Picture of a draining tank with process variables clearly labeled 
 
Variables with units: 
  

 - Liquid flow rate   F(t) [=] m3/s 
   

 - Liquid density   ρ(t) [=] Kg/m3   
 

 - Liquid level height   h(t) [=] m  
 

 - Area of tank cross section AC   [=] m2   
   

 - Liquid volume   V(t) [=] m3
 

 

 - Time     t      [=] s 
 
Assumptions: 
 

 - the process model is restricted to the liquid volumes and flows 
 - liquid can enter or leave the tank only through the flow streams shown (i.e. no evaporation) 
 - tank cross sectional area is constant with height, or  V(t) = AC h(t) 
 - liquids are incompressible and thus density is constant, or  ρ0(t) =ρ1(t) =ρ(t) =ρ 
 
Step by step details: 
 

Perform a mass balance on a draining tank experiment that takes time t∆ to complete, as follows: 
 

  - Mass in by flow:   ttFt ∆)()( 00ρ  
  - Mass out by flow:   ttFt ∆)()( 11ρ  
  - Mass generation:     0 
 

  - Mass consumption:      0 
  - Mass accumulation in tank:  ttt tVttVt )()()()( ρρ −∆+  
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The bars over the density and flow rate variables, )(tiρ and )(tFi , indicate that these values are 
averaged over finite time t∆ . 
 
Sum the mass balance: 0 0 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t t tt V t t V t t F t t t F t tρ ρ ρ ρ+∆ − = ∆ − ∆  
 

Divide by t∆ : 0 0 1 1
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )t t tt V t t V t
t F t t F t

t
ρ ρ

ρ ρ+∆ −
= −

∆
  

 
Take the limit as 0→∆t (as t∆ approaches zero) and recognize that the left side becomes the 
definition of a derivative. We further recognize that the average process variables values )(tiρ and 

)(tFi  then become point values )(tiρ and )(tFi , or: 
 

 )()()()()()(
1100 tFttFt

dt
tVtd ρρρ

−=    

  
   

We employ the assumption that liquids are incompressible and divide by density across the equation 
to obtain: 

 )()()(
10 tFtF

dt
tdV

−=      

    
Employing the assumption that the cross-sectional area of the tank is constant with respect to liquid 
level (liquid height), or V(t) = AC h(t), yields: 
 

 )()()(
10 tFtF

dt
tdhAC −=      

 
An ordinary differential equation (ODE) is incomplete without boundary conditions. For dynamic 
models used in process control, the most useful conditions are initial conditions, or those that define 
the condition of the process at time t = 0. Suppose we know that the initial height of the liquid is 
steady at hS, or: 
 h(0) = hS      
 
Then the dynamic process model with initial conditions becomes 
 

   )()()(
10 tFtF

dt
tdhAC −=       where  h(0) = hS                            (11.1) 

 
 
Case 1: Assume Drain Flow Proportional to Hydrostatic Head 
If we assume the drain flow out of the bottom of the tank is proportional to the height of the liquid in 
the tank (the hydrostatic head), then we can write 
 
 )(α)( 11 thtF =      with units  1α  [=] m2/s   
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Substituting this flow rate into the dynamic process model yields 
 

 )()()(
01 tFth

dt
tdhAC =+ α          

Divide by 1α  to obtain the following: 
 

   )(1)()(
0

11
tFth

dt
tdhAC

αα
=+       where  h(0) = hS             (11.2) 

 
 

Compare the above to the general first order process model: 
 

 )()()( tuKty
dt

tdy
PP =+τ     

 
(We assume no dead time for this model and will explore dead time as a separate issue when we 
introduce Laplace transforms in Chapter 14.) 
 
We see our payoff for this modeling exercise. Specifically, we now know the steady state process 
gain, PK , and the process time constant, Pτ , of the draining tank model:  
 

                                      
1

1
α

=PK [=] s/m2  and     
1α

τ C
P

A
=  [=] s   

 
As expected, the process gain has units of y(t)/u(t) and more specifically h(t)/F0(t) [=] m/(m3/s), and 
the time constant has units of time.  

Case 2: Assume Drain Flow Proportional to Square Root of Hydrostatic Head 
Unfortunately, while Case 1 had a pleasing outcome, drain flow out of a freely draining tank follows 
much more closely a square root relationship with liquid height rather than the direct proportional 
relationship presented previously. The square root relationship is expressed as such: 
 

 )()( 11 thtF α=  
      
Substituting yields the following process model: 
 

                                     )()()(
01 tFth

dt
tdhAC =+ α      where h(0) = hS                                (11.3) 

 
Comparing the above equation to the general first order process model reveals a problem – there is 
not a square root relationship, )(ty , in the general first order form. Hence, we cannot directly 
determine the model process gain and time constant for this case by a simple comparison.  
 Because the dependent variable, h(t), has a square root relation, this model is a nonlinear 
ODE. Before we apply linear control theory to this process model, we must linearize it. We discuss 
the method for linearizing nonlinear equations in Chapter 12. 
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11.4  Mass Balance on Two Draining Tanks 
Consider two freely draining tanks stacked one above the other similar to the Gravity Drained Tanks 
case study in Loop Pro and as shown below in Fig. 11.2. Although the lower tank receives its feed 
from the upper tank, the dynamics and behavior of the lower tank have no impact on the upper tank. 
This arrangement is traditionally called non-interacting tanks in series. 
 
Picture: 

F0(t)

F1(t)

V1(t)

AC 1

h1(t)

V2(t)h2(t)

AC 2 F2(t)  
 

Figure 11.2 - Two non-interacting draining tanks in series with process variables labeled 
 
Variables with units: 
  

 - Liquid flow rate   F(t) [=] m3/s 
   

 - Liquid density   ρ(t) [=] Kg/m3   
 

 - Liquid level height   h(t) [=] m  
 

 - Area of cross section  AC   [=] m2   
   

 - Liquid volume   V(t) [=] m3
 

 

 - Time     t      [=] s 
 
 

Assumptions: 
 

 - the process model is restricted to the liquid volumes and flows 
 - liquid can enter or leave the tank only through the flow streams shown (i.e. no evaporation) 
 - tank cross sectional area is constant with height, or  V(t) = AC h(t) 
 - liquids are incompressible and thus density is constant, or  ρ0(t) =ρ1(t) =ρ(t) =ρ 
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Step by step details: 
 

Applying the mass balance derived in Section 11.3 to each tank, we obtain the following: 
 

         Tank 1:                   )()(
)(

10
1

1 tFtF
dt

tdh
AC −=           where h1(0) = h1,S                    

 

  Tank 2:                  )()(
)(

21
2

2 tFtF
dt

tdh
AC −=         where h2(0) = h2,S                     

 
Applying the assumption that tank drain flow rate is proportional to the square root of the hydrostatic 
head, or 
                                      )()( 111 thtF α=        and          )()( 222 thtF α=                         
 

yields the following model equations: 
 

             Tank 1:                   )()(
)(

011
1

1 tFth
dt

tdh
AC =+ α             where h1(0) = h1,S           

   

  

             Tank 2:                  )()(
)(

1122
2

2 thth
dt

tdh
AC αα =+       where h2(0) = h2,S          

 
Both of these equations are nonlinear because of the square root relation for the dependent variables, 
h1(t) and h2(t). Also note that h2(t) does not appear in the first of these coupled equations, which 
supports the earlier statement that the dynamics of the lower tank have no effect on the upper tank. 
 
11.5  Energy Balance on a Stirred Tank with Heater 
Here we perform an energy balance on a well-stirred tank of liquid that is being heated with a steam 
coil. As indicated in the picture, the flow rates, temperatures and other variables can all change with 
time.   
 
Picture: 

                                  
 

Figure 11.3 - Steam heated mixing tank with process variables labeled 

F0(t) Τ0 (t)

F1(t) Τ1 (t)

V(t) T(t)

AC

h(t)
steam 

Q(t)
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Variable with units: 
 

 - Liquid flow rate   F(t) [=] cm3/s 
  

 - Liquid density   ρ(t) [=] g/cm3   
 

 - Liquid level height   h(t) [=] cm  
 

 - Area of cross section  AC   [=] cm2   
     

 - Liquid volume   V(t) [=] cm3 
 

 - Energy in from steam   Q(t) [=] cal/s 
 

 - Liquid temperature  T(t)  [=] °C             

 - Liquid heat capacity  CP    [=] cal/g·°C  
 

 - Time       t     [=] s 
 
Assumptions: 
 

 - AC constant with height of liquid, i.e. V(t) = AC h(t) 
 - ρ and CP constant 
 - No evaporation  
 - No other streams enter or leave the vessel than those shown 
 - Vessel is perfectly insulated 
 - Liquid is perfectly mixed, i.e. T1(t) = T(t) 
 - No shaft work (no WS) from mixer 
 - Only energy of liquid is considered 
 - Enthalpy balance = Energy balance (or ∆PE = ∆KE = 0) 
 - Reference Temperature is zero, i.e. Tref  = 0 
 - No reaction occurs 
 - No frictional losses; no pressure drop losses 
 
Step by step details: 
 

Perform an energy balance on an experiment that takes time t∆ to complete, as follows: 
 

      - Energy in by flow:    ttTtFCP ∆)()(0ρ   

 

      - Energy out by flow:    ttTtFCP ∆)()(1ρ  
 

      - Energy in from steam:       ttQ ∆)(  
 

      - Energy accumulation in tank: 
 
                                      ]|)()(|)()([|||| tttPCtttttt tTthtTthCAHHEE −=−=− ∆+∆+∆+ ρ  
 
 
Sum the energy balance (conserve the variable): 
     

                  0 0 1[ ( ) ( ) | ( ) ( ) | ] ( ) ( ) ( ) ( ) ( )C P t t t P PA C h t T t h t T t C F t T t t C F t T t t Q t tρ ρ ρ+∆ − = ∆ − ∆ + ∆  
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Divide by ∆t and take the limit as ∆t 0→ . Recognize that the average values of the process variables 
become point values, or )()(),()(),()( tQtQtTtTtFtF →→→ , yielding the following process 
model: 
 

[ ]
P

C C
tQtTtFtTtF

dt
tTthdA

ρ
)()()()()()()(

100 +−=  

 
We can then apply the product rule to the derivative: 
 

P
CC C

tQtTtFtTtF
dt

tdhtTA
dt

tdTthA
ρ

)()()()()()()()()( 100 +−=+  

 
Recall the mass balance for a freely draining tank: 
 

)()()(
10 tFtF

dt
tdhAC −=  

 
Substituting the mass balance into the energy balance yields 
 

P
C C

tQtTtFtTtFtFtFtT
dt

tdTthA
ρ

)()()()()()]()()[()()( 10010 +−=−+  

 
We can then eliminate like terms to arrive at the energy balance process model for liquid in the tank: 
 

                          
P

C C
tQtTtFtFtT

dt
tdTthA

ρ
)()()()()()()( 000 +=+          where T(0) = TS 

 
To calculate the tank height used in the energy balance, we must include the mass balance as part of 
the overall model: 
 

                                       )()()(
10 tFtF

dt
tdhAC −=       where    h(0) = hS 

 
 
Note that the energy balance has non-constant coefficients, so we cannot draw any conclusions by 
comparing it directly to the general first order process model with constant coefficients: 
 

                               )()( tuKty
dt
dy

PP =+τ     

 
The next chapter shows how to approximate non-constant coefficients with constant coefficients 
using linearization techniques. 
 
11.6  Species (Component) Balance on a Stirred Tank with Reaction 
Here we perform a species (component) balance on a well-stirred tank of liquid where reaction A→B 
takes place. As indicated in Fig. 11.4, the flow rates, temperatures and other variables can all change 
with time.   
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Picture: 
F0(t), T0(t), CA0(t)

F1(t), Τ(t), CA(t)

V(t)
T(t)
CA(t)

AC

h(t)

 
 

Figure 11.4 - Mixing tank with chemical reaction and process variables labeled 
 
 
Variables with units ( in addition to those in previous example):  
 

 - Concentration of A   CA  [=] gmol/cm3 
  

 - Moles of A    nA   [=] gmol  
 

 - Activation energy   E    [=] cal/gmol  
 

 - Gas constant   R    [=] cal/gmol·K   
     

 - Reaction rate constant  k     [=] 1/s   

 - Liquid flow rate   F(t) [=] cm3/s 
  

 - Liquid density   ρ(t) [=] g/cm3   
 

 - Liquid level height   h(t) [=] cm  
 

 - Area of cross section  AC   [=] cm2   
     

 - Liquid volume   V(t) [=] cm3 
 

 - Liquid temperature  T(t)  [=] K             

 - Liquid heat capacity  CP    [=] cal/g·K 
 

 - Rate of reaction    r     [=] gmol/cm3·s 
 

 - Time       t     [=] s 
 

  

Assumptions (in addition to the previous example): 
 

   - There is no heat of reaction (reaction is neither exothermic nor endothermic) 
 

   - A → B  is a first order reaction, i.e. r(t) = k(t)CA(t) 
   - Arrhenius temperature dependence on reaction rate constant, i.e. )(/

0)( tRTEektk −=  



 

108 
 

Practical Process Control® by Douglas J. Cooper 
Copyright © 2005 by Control Station, Inc. 

All Rights Reserved 

Details: 
 

Perform a species (component) balance on an experiment that took time t∆ to complete, as follows:  
 

    - Moles of A in by flow:  ttCtF A ∆)()( 00  
 

    - Moles of A out by flow:  ttCtF A ∆)()(1  
 

    - A out due to reaction:    ttVtr ∆)()(  
 

    - Accumulation of A in tank: 
 
                     ]|)()(|)()([|)()(|)()(|)(|)( tAttACtAttAtAttA tCthtCthAtCtVtCtVtntn −=−=− ∆+∆+∆+  
 
Sum up the species balance and take the limit as ∆t → 0. Recognize that the average values of the 
process variables become point values, or )()(),()(),()( tTtTtFtFtCtC AA →→→ , yielding the 
following process model: 
 

 )()()()()()(
)]()([

100 trthAtFtCtFtC
dt

tCthd
A CAA

A
C −−=  

 
Apply the product rule to the derivative and assume an Arrhenius temperature dependence: 
 

                      )(/
0100 )()()()()()()()(

)(
)( tRTE

ACAAAC
A

C ektCthAtFtCtFtC
dt

tdhtCA
dt

tdC
thA −−−=+  

 
Substituting the mass balance into the species balance and eliminating like terms, we arrive at the 
following process model: 
 

          )()(])()()[(
)(

)( 00
)(/

00 tFtCekthAtFtC
dt

tdC
thA A

tRTE
CA

A
C =++ −       where CA(0) = CA,S 

 
An energy balance on this process yields 
 

                                 )()()()()()( 000 tTtFtTtF
dt

tdTthAC =+        where  T(0)=TS 

 
A mass balance yields the following: 
 

                                            )()()(
10 tFtF

dt
tdhAC −=    where  h(0) = hS 

 
 
 
11.7  Exercises 
 
 Q-11.1 Consider the stirred tank reactor below. Following good engineering practice, derive the 
 steady state process gain and process time constant for this system. You should assume first 
 order reaction kinetics, rA(t) = kCA(t). 
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 Q-11.2 A constant density fluid flows into a perfect cone tank as pictured below. Showing all steps, 

 derive the dynamic ordinary differential equation (ODE) describing liquid height in 

the  tank. Express your result in the form ?=
dt

dh(t)  

 

 
   Exit flow, F1(t), should be assumed to be proportional to the square root of the hydrostatic 

 head, and the geometry of  the tank indicates that 
H

h(t)
R

r(t)
= . 

 
 Q-11.3 Consider the stirred reactor below. Following good engineering practice, derive the steady 

 state process gain and process time constant for this system. You should assume first-order 
 reaction kinetics, rA(t) = kCA(t). Note that parameters r and h are not time dependent. 

 

 

F 
C AO (t) 

F
CA (t)

V
CA (t)

F 0 (t) 

FI (t)

R

r(t)H
h(t)

F 
C A0 (t) 

r

h
CA(t)

F
CA(t)
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12.  Linearization of Nonlinear Equations and Deviation Variables 
  
12.1  The Linear Approximation 
Popular process control theory requires that all equations used in analysis be linear and have constant 
coefficients. Recall that all of the process models we derived in the Chapter 11 were nonlinear 
ordinary differential equations (ODEs) or linear ODEs with nonconstant coefficients.  
 The distinction between linear and nonlinear ODEs lies in the treatment of the dependent 
variable, y(t). Specifically, if the dependent variable is raised to a power, inversed, or otherwise 
manipulated, the equation is nonlinear. Interestingly, the complexity of the forcing function (the right 
hand side of the ODE that is not a function of the dependent variable) does not influence whether a 
process displays a linear or nonlinear character. For example: 
 

  Linear ODE with constant coefficients:   )sin()()( 2 tttyB
dt

tdyA =+           (12.1) 

 

 Linear ODE with nonconstant coefficients: )()()()()( tutytB
dt

tdytA =+           (12.2) 

                          

  Nonlinear ODE with constant coefficients:  )(
)(

)( tuC
tx

B
dt

tdxA =+            (12.3) 

 

      Nonlinear ODE with nonconstant coefficients:    )()()()()()(
2

tutCtxtB
dt

tdxtA =+⎟
⎠
⎞

⎜
⎝
⎛    (12.4) 

 
 
Linearization is a method used to approximate nonlinear equations with nonconstant coefficients as 
linear equations with constant coefficients.  
 
 

f[x(t)]

x(t)xS

linear approximation

nonlinear function

point of linearization

good agreement
in this range

 
 

Figure 12.1 - Linear approximation shows good agreement in a narrow operating range 
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 As shown in Fig. 12.1, linearization is a procedure for approximating a nonlinear function 
with a simple linear function. The linear approximation is exact at one point and has good agreement 
in a range around that point. The approximation degrades as we move away from the point of 
linearization. 
 Fortunately, we get to choose the point around which we will linearize. We choose the point 
where the process will spend most of its time, the controller design level of operation. This should 
correspond to the normal or expected set point, which in turn should correspond to the normal or 
expected value of the process variable. 
 
12.2  Linearization for Functions of One Variable 
The method for linearizing a nonlinear equation f[x(t)] is to approximate with a Taylor series 
expansion around the point xS: 
 

         [ ]
444444 3444444 21
K

HOT

txf
dx
dxtx

txf
dx
dxtxxftxf

SS xx
S

xxSS +
−

+−+= == )]([
!2

)(
)]([])([][)]([ 2

22
         (12.5) 

 
We consider only the linear terms of the expansion and ignore the higher order terms (HOT) of the 
Taylor series. As shown in the following examples, isolating and linearizing the individual nonlinear 
terms of a complicated equation and then substituting them back into the original form is often more 
convenient than linearizing the entire original equation at once. 
 

Example: Tank Liquid Level Model 
A mass balance on a gravity drained tank as detailed in Section 11.3 produces the following tank 
liquid level model: 
 

 )()()(
10 tFtF

dt
tdhAC −=       where   h(0)=hS          (12.6) 

 
Assume that drain flow is proportional to the square root of hydrostatic head, or F1(t) = α h1/2(t), 
and the model becomes the following: 
 
 

 )()()(
0

21 tFth
dt

tdhAC =+ α        where   h(0)=hS          (12.7) 

 
The nonlinear term in the ODE is h1/2(t). We isolate this nonlinear term and linearize h1/2(t) 
around the design level hS (a tank height design value) using the Taylor series approximation:  
 

 
ShhSS th

dh
dhthhth =−+≅ )]}([]{)([)( 212121   

                   

             
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−+≅

2
1

21

2

1])([

S

SS
h

hthh  
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              )(
2

1
2
1

21
2121 th

h
hh

S
SS +−≅  

The linear approximation then becomes: 
 

 ).(
2

1
2
1)( 21

2121 th
h

hth
S

S +≅                         (12.8) 

 
Substitute the linear approximation into the original ODE to obtain our linear process model: 

 
 

                    21
021 2

)()(
2

)(
S

S
C htFth

hdt
tdhA αα

−=+        where   h(0)=hS           (12.9) 

 
 

The general form of the dynamic model above is a linear ODE with constant coefficients: 
 

                                                    EtuCtyB
dt

tdyA +=+ )()()(            (12.10) 

 
We compare this to the general first-order dynamic model (without dead time): 
 

                                              )()()( tuKty
dt

tdy
PP =+τ        where   y(0)= 0 

 
Although the tank height model ODE is linear with constant coefficients, we still cannot 
determine KP andτP by comparison. This is because of the extra constant term, E, on the right-
hand side of the equation and the non-zero initial condition, hS. 
 

     
 
 

12.3  Linearization for Functions of Two Variables 
Linearize f[x(t),y(t)] and g[x(t),y(t)] around the point (xS, yS) using Taylor series expansion:  
 

                      [ ])(),()( tytxf
dt

tdx
=            [ ])(),()( tytxg

dt
tdy

=  

 
As with the single variable expansion, we ignore the higher order Taylor series terms, so the 
approximations are as follows: 
 

                   [ ] [ ] [ ]
SSSS yxSyxSSS y

fyty
x
fxtxyxftytxf ,, |)(|)(),()(),(

∂
∂

−+
∂
∂

−+≈  

and 

                   [ ] [ ] [ ]
SSSS yxSyxSSS y

gyty
x
gxtxyxgtytxg ,, |)(|)(),()(),(

∂
∂

−+
∂
∂

−+≈  



 

113 
 

Practical Process Control® by Douglas J. Cooper 
Copyright © 2005 by Control Station, Inc. 

All Rights Reserved 

Again, individually isolating and linearizing the nonlinear terms and then substituting them back into 
the original equation is often more convenient than linearizing the entire original equation at once. 

 
Example: Consider the Tank Species Balance Model 
A species (component) balance on a mixing tank in Section 11.6 produced the following tank 
concentration model: 
 

           )()]([
)( )(/

00 tCektCC
V
F

dt
tdC

A
tRTE

AA
A −−−=        where   CA(0) = CAS 

 
 The nonlinear term, e-E/RT(t)CA(t), is a function of two variables, T(t) and CA(t). We isolate the 
nonlinear term and linearize around CAS ,TS  (design concentration and temperature values): 
 

Using the Taylor series expansion and recalling that 
dx

xduee
dx
d xuxu )()()( = , then 

 

                                                         
           [ ] ( ) [ ]/ / // ( ) 2( ) ( ) / ( )S S SE RT E RT E RTE RT t

A AS S AS S A ASe C t e C T t T e C E RT C t C e− − −− ≈ + − + −  

 
 

Substituting the linearized term into the original ODE yields the following: 
 

          
[ ]

[ ] ( ) [ ]{ }SSS RTE
ASASAS

RTE
SAS

RTE

AA
A

eCtCRTECeTtTCek

tCC
V
F

dt
tdC

/2//
0

0

)(/)(

)()(

−−− −+−+−

−=
 

 
 

The resulting dynamic model is a linear ODE with constant coefficients of general form: 
 

EtdDtuCtyB
dt

tdyA ++=+ )()()()(  

 
 The variable d(t) might be a disturbance variable that impacts the measured process variable 
y(t). As in the single variable case, we have an extra constant term, E, on the right hand side of 
the equation. 

     
 
12.4  Defining Deviation Variables  
Deviation variables (also called perturbation variables) are used to recast an equation into a more 
convenient form for control system analysis. Specifically, the time-dependent variables in an equation 
are recast in terms of their deviation from a fixed value. For controller design, the value we choose is 
not only the design level of operation, but also the point of linearization, and the point around which 
we generated dynamic data.  In a proper design, all of these have the same value.  
 For the time-dependent variable x(t), the deviation variable xP(t) is defined relative to fixed 
point xS as such: 
 

                    xP(t) = x(t) - xS   
 



 

114 
 

Practical Process Control® by Douglas J. Cooper 
Copyright © 2005 by Control Station, Inc. 

All Rights Reserved 

This is shown graphically in Fig. 12.2: 
 
 

xP(t)x(t)

xs

time

x(t)

 
 

Figure 12.2 - Deviation variable xP(t) is the deviation of x(t) from constant value xS  
  
12.5  Deviation Variables Simplify the Equation Form 
Deviation variables are useful in preparing equations for control system analysis for two important 
reasons: 
 - using them eliminates constant terms, and  
 - the initial conditions for the ODEs become zero. 
 
To explore this, consider the linear(ized) ODE: 
 

                                               BtAx
dt

tdx
+= )()(         where  x(0) = xS 

 
At the point x(t) = xS, the ODE becomes  
 

                                                BAx
dt

dx
S

S +=            where  x(0) = xS 

 
Subtracting the second equation from the first, we obtain 
 

     ][])([])([ BBxtxAxtx
dt
d

ss −+−=−         where  x(0) − x(0)  = xS − xS = 0 

 
We then apply the definition of the deviation variable to obtain the following: 
 
 

                                )()( tAx
dt

tdx p
p

=      where        xP(0) = 0 

 
 
Note that this form, expressed as a difference from xS, has no extra constant terms and has an initial 
condition of zero.  
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Example: Tank Liquid Level Model 
Recall the linearized tank liquid level model: 

 

21
021 2

)()(
2

)(
S

S
C htFth

hdt
tdhA αα

−=+         where  h(0) = hS 

 We choose the design variables as h(t) = hS and F0(t) = F0,S. We will use these later to define 
the deviation variables. Note that these values are not independent from each other because if you 
maintain the inlet flow rate at F0,S for a sufficient length of time, the liquid level should ultimately 
steady at hS.  
 Substituting these design variables into the original ODE, we obtain 

 

21
,021 22 SSS

S

S
C hFh

hdt
dh

A αα
−=+             where  h(0) = hS 

 
We then subtract the second ODE from the first: 

 

        [ ] [ ] [ ] ⎥⎦
⎤

⎢⎣
⎡ −−−=−+− 2121

,0021 22
)()(

2
)( SSSS

S
SC hhFtFhth

h
hth

dt
dA ααα    where  h(0) − h(0) = 0 

  
and define the deviation variables: 
 

 S
P hthth −= )()(  

 S
P FtFtF 000 )()( −=  

 
Substituting these, we obtain the linear ODE with constant coefficients and a zero initial condition: 

 

)()(
2

)(
021 tFth

hdt
tdhA PP

S

P

C =+
α      where  hP(0) = 0 

 
 We can now compare this to the general first order ODE without dead time. We have not 
previously mentioned it, but the initial condition is zero for this general form: 

 

)()()( tuKty
dt

tdy
PP =+τ                 where y(0) = 0 

 
 We now have a payoff for this effort. By comparing the model forms, we can determine the 
steady state process gain and overall time constant for this process:  

 

α

212 S
P

h
K =              

α
τ

212 SC
P

hA
=  

 
 These KP and τP values are only exact at point (h(t)=hS, F0(t)=F0,S). They become 
approximations that decrease in accuracy as h(t) moves away from liquid height hS or F0(t) moves 
away from F0,S. 
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12.6  Exercises 
 
Q-12.1 Consider the process below.  A control system is under development where FO(t) is the 

manipulated variable and CA(t) is be the measured variable.  
 
 

 
 
 
       a)  Assuming a third order reaction for A → B, or r(t) = k[CA(t)]3, and a constant cross section, or 

V(t) = ACh(t), show all steps to show that the ODE describing this system is 
 
 

[ ] )(
)(

)()(
)(
)()( 3 tF

th
C

tCkAtC
th
tF

dt
tdC

A O
AO

ACA
OA

C =++  

 
     with the initial condition   CA(0) = CA,S. 
  
 
       b)  Linearize this ODE and put it in deviation variable form. Assume that when FO(t) = FO,S, then 

at steady state CA(0) = CA,S and h(0) = hS. 
 
       c)  Near the expected point of operation, what are the (approximate) process gain and time 

constant values? 
 
Q-12.2 The density of an ideal gas, )(tρ , can be expressed as follows: 
 

( )( )
( )

MP tt
RT t

ρ =  

 
 where M is the molecular weight and R is the ideal gas constant. Showing all steps, linearize 

this expression around Sρ to obtain a linear approximation for density as a function of 
temperature and pressure. 

 

F O (t) 
C AO 

F(t)
CA(t)

h(t)

A C

V(t)
CA(t)
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13.  Time Domain ODEs and System Behavior 
 

13.1  Linear ODEs 
After deriving process models, linearizing them, and simplifying them with deviation variables, we 
are left with linear ODEs (ordinary differential equations) with constant coefficients: 
 

 1st order:  )()()(
01 tQtya

dt
tdya =+  

 

 2nd order:  )()()()(
012

2

2 tQtya
dt

tdya
dt

tyda =++  

 

 3rd order:  )()()()()(
012

2

23

3

3 tQtya
dt

tdya
dt

tyda
dt

tyda =+++  

 
The coefficients of these equations signal specific dynamic behaviors. By solving these ODEs in the 
time domain, we learn the relationship between an equation form and the dynamic behavior it implies. 
 
13.2  Solving First Order ODEs 
For the general first order ODE of the form 
 

            )((t))()( tQytP
dt

tdy
=+         where   y(0) = yS 

 
the solution method involves defining an integrating factor, solving a general solution form based on 
this integrating factor, and then solving for the constant of integration using the initial conditions. 
 
An integrating factor, µ, is defined as follows: 
 

 dttPe )(∫=µ  
 

The solution to the ODE is then ⎥⎦
⎤

⎢⎣
⎡ += ∫ 1)(1)( CdttQty µ

µ
 

 
where the constant C1 is computed from the initial condition  y(0) = yS. 
 
 

Example 1:  Solve this ODE in the time domain:  
 

tty
dt

tyd 4)(2)(
=+            where     y(0) = 1 

 

Solution:   Using the steps outlined, we first compute the integrating factor, tdt ee 22
== ∫µ  
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so the solution becomes     ⎥⎦
⎤

⎢⎣
⎡ += ∫ 1

2
2 )4(1)( cdtte

e
ty t

t ⎥⎦
⎤

⎢⎣
⎡ += ∫−

1
22 4 cdttee tt  

 
We must then integrate by parts: ∫ ∫−= vduuvudv  
 

 u = t;  du = dt;     tev 2
2
1

= ;  dtedv t2=  

 
Substituting the result, the solution becomes 

 ⎥⎦
⎤

⎢⎣
⎡ +−= ∫−

1
222

2
4

2
4)( cdteteety ttt  

 

                  ⎥
⎦

⎤
⎢
⎣

⎡
+= −

1
222 2 cetee ttt  

 

                  tect 2
112 −+−=  

 
Next, we apply initial conditions: @ t = 0, y = 1, so 1 = −1 + c1, and thus c1 = 2, 
 
 

which yields the total solution: 122)( 2 −+= − tety t  
 

 
     

 
Example 2:  Solve this ODE in the time domain: 
 

ttx
dt

tdx sin)()(
+=     where  x(0) = 0 

 
Solution:  We first rewrite the ODE as such: 
 

 ttx
dt

tdx sin)()(
=−          

 
Then, we compute the integrating factor: 

 ttd ee −−
== ∫ 1µ  

 

The solution then becomes  ⎥⎦
⎤

⎢⎣
⎡ += ∫ −

1sin)( cdtteetx tt  
 

From integral tables, we can see that 

 ∫ ⎥
⎦

⎤
⎢
⎣

⎡
−= −− ttedtte tt cossin

2
1sin  
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Substituting this, the solution becomes 

 ⎥⎦
⎤

⎢⎣
⎡ ++−= −

1)cos(sin
2
1)( ctteetx tt  

   tectt 1)cos(sin
2
1

++−=  

 

We then apply initial conditions: @ t = 0, x = 0, so 1])0cos()0sin([
2
10 c++−= , thus 

2
1

1 =c , 

 

which yields the total solution: 1( ) sin cos 
2

tx t e t t⎡ ⎤= − −⎣ ⎦  

 
     

 
13.3  Deriving "τp = 63.2% of Process Step Response" Rule 
Our ability to solve linear first order ODEs now allows us to derive the “τp = 63.2% of Process Step 
Response” rule used in model fitting, as referred to in Section 3.4. 
 

 
 

Figure 13.1 – Response of true first order process to a step change in controller output 
  

The figure above shows the open loop step response of a true first order process model: 
 

            )()()( tuKty
dt

tdy
pp =+τ        where      y(0) = 0 

 
As shown in Fig 13.1, the measured process variable, y(t), and controller output signal, u(t), are 
initially at steady state with y(t) = u(t) = 0 for t < 0. At time t = 0, the controller output is stepped to 
u(t) = A, where it remains for the duration of the experiment. Hence, the first order model becomes 
 

                                                    pp AKty
dt

tdy
=+ )()(τ  

Time, (t)
0 τ

0.632 AKP

 AKP

 A

P
ro

ce
ss

 V
ar

ia
bl

e,
  y

(t)
C

on
tro

lle
r O

ut
pu

t, 
 u

(t)

 AKP 

0 

0 

 A 



 

120 
 

Practical Process Control® by Douglas J. Cooper 
Copyright © 2005 by Control Station, Inc. 

All Rights Reserved 

To solve this ODE, rearrange as: 
 

                                        
p

p

p

AK
ty

dt
tdy

ττ
=+ )(1)(  

 

First compute the integrating factor, ∫=
dtpe

)/1( τ
µ pte τ/= .  Solving the ODE using this integrating 

factor yields 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∫ 1

/
/
1)( ctd

AK
e

e
ty

p

pt
t

p

p τ
τ

τ
    

 

   
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+= ∫

−
1

// ctde
AK

e pp t

p

pt ττ

τ
 

 

Recall that ∫ = axax e
a

dxe 1    

 
and thus ∫ = PP t

P
t edte ττ τ //  

 
so  [ ]1

//)( ceAKety pp t
p

t += − ττ  
 
                                                                  pt

p ecAK τ/
1 −+=  

 
Next, apply the initial condition: @ t = 0, y = 0, 0 = AKp + c1, and thus  c1 = −AKp. 
 
 
Substituting and rearranging, we obtain the solution to the ODE: 
 

⎥⎦
⎤

⎢⎣
⎡ −= − Pt/

p eAKty τ1)(  

 
After the passage of one time constant, time t = τp, the solution becomes 
 

[ ]1/ 11)( −− −=⎥⎦
⎤

⎢⎣
⎡ −= eAKeAKy ppp

PP τττ  

    
Therefore, the measured process variable step response at time t = τp is 
 

pp AKy 632.0)( =τ  
 
As we set out to show, the measured process variable will have traveled to 63.2% of the total change 
that it will ultimately experience at time t equals one time constant,τP. 
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13.4  Solving Second Order ODEs 
For the general second-order ODE with constant coefficients, 
 

    )()()()(
012

2

2 tQtya
dt

tdya
dt

tyda =++  

 

the total solution, y(t), is the sum of the particular solution, )(ty p , and the complementary solution, 

)(y tc , or 
              )()()( tytyty cp +=  
 

The complementary solution, )(y tc , is the solution of the ODE when 0 )( =tQ , or 
 

0)()()(
012

2

2 =++ tya
dt

tdya
dt

tyda  

 
To solve the complementary solution, form the characteristic equation using operator notation: 
 

0))(( 2101
2

2 =−−=++ pspsasasa  
 

The roots of the characteristic equation, 21  and pp , are computed using the quadratic equation: 
 

2

02
2
11

21 2
4

,
a

aaaa
pp

−±−
=  

 

The coefficients 012  and , aaa  define the roots of the characteristic equation, and the roots define the 
form of the complementary solution.  
 
Case 1: If 04 02

2
1 >− aaa , then the characteristic equation of the complementary solution will have 

two distinct real roots, p1 and p2, and the solution will have the form  
  
    tptp

p ecectyty 21
21)()( ++=  

 

Case 2: If 04 02
2

1 =− aaa , then the characteristic equation of the complementary solution will have 
two equal or repeated roots, p3 = p4 , and the solution will have the form 

 

    tp
p etcctyty 3)()()( 21 ++=  

 

Case 3: If 04 02
2

1 <− aaa , then the characteristic equation of the complementary solution will have 
two complex conjugate roots, ipp 65 ± , and the solution will have the form 
 

   ( ) ( )5
1 6 2 6( ) ( ) cos sinp t

py t y t e c p t c p t⎡ ⎤= + −⎣ ⎦  
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Note that the roots of the characteristic equation provide important clues about the dynamic behavior 
described by an ODE. Stability relates to the sign of a root because e+t grows without bound and e-t 
approaches zero as time increases. And as results in Case 3, a solution with sines and cosines will 
have a natural tendency to oscillate. 
 

Example 1: Solve this ODE in the time domain: 
 

tty
dt

tdy
dt

tyd
=++ )(3)(4)(

2

2
      where    0)()0(

0
==

=tdt
tdyy  

 

Complementary Solution: 0)(3)(4)(
2

2
=++ ty

dt
tdy

dt
tyd      

 

The characteristic equation is          0342 =++ ss   with roots  3,1
2

12164, 21 −−=
−±−

=pp  

 
so yc(t) solution has the form tt

c ececty 3
21)( −− +=  

 
Particular Solution:  The right hand side of the original ODE indicates that  tccty p 43)( +=  
 

so     4
)(

c
dt

tdy p =      and     0
)(

2

2

=
dt

tyd p  

 
Substituting this into the original ODE yields 
 
     ttccc =+++ )(3)(4)0( 434  
 
We then equate like terms and solve for constants: 

         ttc =43             so       
3
1

4 =c  
 

and     034 34 =+ cc  so        03
3
14 3 =+⎟

⎠
⎞

⎜
⎝
⎛ c   and    

9
4

3 −=c  

 

so     tty p 3
1

9
4)( +−=    

 

Total Solution:   tt
cp ececttytyty 3

213
1

9
4)()()( −− +++−=+=  

 
We apply initial conditions to determine the constants: 

 

   1.  @ t = 0, y = 0           210
9
40 cc +++−=  

 

 2.  @ t = 0, 0)(
=

dt
tdy  0

2
0

1 3
3
10)( ecec

dt
tdy

−−==  
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Solving simultaneously yields 
18
1,

2
1

9
3

3
13

9
4

21
21

21
−==

⎪
⎭

⎪
⎬

⎫

==+

=+
cc

cc

cc
 

 

and thus the total solution is  tt eetty 3
18
1

2
1

3
1

9
4)( −− −++−=   

 
 
Example 2:  Solve this ODE in the time domain: 
 

                          2
2

2
)()(2)( tty

dt
tdy

dt
tyd

=++         where  (0) 0y =  and   1)(

0
=

=tdt
tdy  

 

Complementary Solution:  0)()(2)(
2

2
=++ ty

dt
tdy

dt
tyd   

 

The characteristic equation is 0122 =++ ss     with roots   1,1
2

442, 21 −−=
−±−

=pp  
 

so yc(t) solution has the form t
c etccty −+= )()( 21  

   
Particular Solution:  The right hand side of the ODE indicates that 2

543)( tctccty p ++=  
 

so                       tcc
dt

tdy p
54 2

)(
+=     and     52

2

2
)(

c
dt

tyd p =  

 
Substituting this into the original ODE yields 
 

     22
543545 )()2(2)2( ttctcctccc =+++++  

 

equate like terms,   022 345 =++ ccc                 04 45 =+ tctc                22
5 ttc =  

 
and solve for constants: 15 =c          44 −=c        63 =c  
 

so     246)( ttty p +−= . 
 

Total Solution:    t
cp etcctttytyty −+++−=+= )(46)()()( 21

2  
 
Apply initial conditions to determine the constants: 
 

   1. 0,0@ == yt       0
21 ])0([0060 ecc +++−=    

 

   2.  1,0@ ==
dt
dyt   0

2
0

2 )1(])0(6[)0(241 ecec +−+−++−=  
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Solving for constants yields: 61 −=c      and      12 −=c  
 
and thus the total solution is  tetttty −+−+−= )6(46)( 2  
 

     
 
Example 3:  Solve this ODE in the time domain: 
 

2)()(2)(2 2

2
=++ ty

dt
tdy

dt
tyd  where 0)()0(

0
==

=tdt
tdyy  

 

Complementary Solution:  0)()(2)(2 2

2
=++ ty

dt
tdy

dt
tyd   

 

The characteristic equation is 0122 2 =++ ss    with roots  ipp
2
1

2
1

4
842, 21 ±−=

−±−
=  

  

so yc(t) solution has the form 
titi

c ececty
)(

2
)(

1
2
1

2
1

2
1

2
1

)(
−−+−

+=  
 

               2 2 2
1 2

t i it t
e c e c e

− −⎡ ⎤= +⎢ ⎥⎣ ⎦
  

 

Recall the identities   atiateiat sincos += , )(cos)(cos atat =− , and )(sin)(sin atat −=−  
 
Applying these, the complementary solution becomes 
 

      
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −+⎥⎦

⎤
⎢⎣
⎡ +=

−

2
sin

2
cos

2
sin

2
cos)( 21

2 titctitcety
t

c  

 

If we let      ( )IR cicc +=
2
1

1      and      ( )IR cicc −=
2
1

2   

 
where and R Ic c are real constants, then 

      
⎭
⎬
⎫

⎩
⎨
⎧ −=

−

2
sin

2
cos)( 2 tctcety IRc

t
 

 
Particular Solution:  The right hand side of the original ODE indicates that 3)( cty p =  
 

so          0
)(

=
dt

tdy p        and        0
)(

2

2

=
dt

tyd p . 

 
Substituting this into the original ODE yields 
 
      2)0(2)0(2 3 =++ c , and thus 23 =c , 
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so      2)( =ty p  
 

Total Solution:   
⎭
⎬
⎫

⎩
⎨
⎧

+=+=
−

2
sin

2
cos2)()()( 2 tctcetytyty IRcp

t
 

 
We apply initial conditions to determine the constants: 
 

    1.  @ t=0, y=0    { }0sin0cos20 0
IR cce −+=      so    2−=Rc  

 

    2.  @ t=0, 0)(
=

dt
tyd   2( ) 10  2cos sin

2 2 2

t

I
d y t t te c

dt
− ⎡ ⎤= = − − −⎢ ⎥⎣ ⎦

   

 

                   ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−−+

−

2
1

2
cos

2
1

2
sin22 tcte I

t
             

 
so at  t = 0, 2=Ic . 
 

The total solution becomes   
⎭
⎬
⎫

⎩
⎨
⎧ +−=

−

2
sin

2
cos22)( 2 ttety

t
 

 
     

 
Example 4:  Solve this ODE in the time domain: 
 

)2(sin)()(
2

2
ttx

dt
txd

=+  where  0)0( =x   and   1)(

0
=

=tdt
tdx  

 

Complementary Solution:  0)()(0)(
2

2
=++ tx

dt
tdx

dt
txd   

 

The characteristic equation is 0102 =++ ss    with roots   ipp ±=21,  
 
so xc(t) solution has form  itit

c ecectx −+= 21)(  
 

We recall the identity     atiateiat sincos +=  
 

We then let      ( )IR cicc +=
2
1

1      and     ( )IR cicc −=
2
1

2    

 
so     )sin()cos()( tctctx IRc −=  
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Particular Solution:  The right hand side of the ODE indicates that  tctctx p 2sin2cos)( 43 +=  
 

so       tctc
dt

tdx p 2cos22sin2
)(

43 +−=  

 and    tctc
dt

txd p 2sin42cos4
)(

432

2

−−=  

 
Substituting into the original ODE yields 
 
     ttctctctc 2sin2sin2cos2sin42cos4 4343 =++−−  
 
We then equate like terms:  ttctc 2sin2sin2sin4 44 =+−        02cos2cos4 33 =+− tctc  
 

Solving for constants yields  
3
1

4 −=c   and   03 =c  

so the particular solution is  ttx p 2sin
3
1)( −=  

 

Total Solution:    tctcttxtxtx IRcp sincos2sin
3
1)()()( −+−=+=  

  
We apply initial conditions to determine the constants: 
 

   1.  @ t = 0, x = 0   0sin0cos0sin
3
10 IR cc −+−=       so   0=Rc  

 

  2.  1)(,0@
0

==
=tdt

tdxt   0cos0cos
3
21 Ic−−=          so   

3
5

−=Ic  

 

and thus the total solution is  tttx sin
3
52sin

3
1)( +−=  

 
     

 
13.5  The Second Order Underdamped Form 
A general and more useful form of the second order ODE is written 
 

)()()(2)(
2

2
2 tuKty

dt
tdy

dt
tyd

Pnn =++ ξττ         where  0)()0(
0

==
=tdt

tdyy  

 
   and y(t) = measured process variable 
    u(t) = forcing function (controller output) 
    KP   = steady state process gain 
    τn    = natural period of oscillation 
    ξ     = damping factor 
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The total solution, y(t), is the sum of the particular solution, yP(t) , and the complementary solution, 
yC(t): 
 
       )()()( tytyty cp +=  
 
The complementary solution form is 
 

                                             0)()(2)(
2

2
2 =++ ty

dt
tdy

dt
tyd

nn ξττ  

 
The characteristic equation is thus 
 
                    0))((12 21

22 =−−=++ pspsss nn ξττ  
with roots 

                                
nn

nnnpp
τ

ξξ

τ

τξτξτ 1

2

442
,

2

2

222

21
−±−

=
−±−

=   

 
 As mentioned in Section 13.4, the roots of the characteristic equation provide information 
about the behavior of the system. If the roots yield sines and cosines, there will be a natural tendency 
for the system to oscillate. If the roots yield even one positive real part, then te+ for that term grows 
without bound as time increases, leading to an unstable system. If all real parts are negative, then 

te− approaches zero for all terms as time increases, indicating that dynamics die out and the system 
remains stable. 
 The second order underdamped form written above is useful for a quick evaluation of the 
nature of the system dynamics based solely on the value of the damping factor,ξ. Since τn must be 
positive (it is a period of time), complex roots and positive or negative real parts arise based solely on 
the value of the damping factor. 
 
 
13.6  Roots of the Characteristic Equation Indicate System Behavior 
As shown in Fig. 13.2, yp is a constant for time t > 0. This would result from a step change in the 
forcing function. While not a necessary assumption for the derivations that follow, it does 
permit the characteristic behaviors of the different cases to be visually apparent. 
 

Case 1: ξ > 1 (overdamped) 0))(( 21 =−− psps ;    
n

pp
τ

ξξ 1
,

2

21
−±−

=−−   

 

The overdamped case, ξ > 1, yields real negative distinct roots, −p1, −p2 (note that the negative signs 
for p1, p2 are shown explicitly).  
 
The total solution is thus 1 2

1 2( ) p t p t
py t y c e c e− −= + + .  

 
As time passes, the real exponentials tpe 1− and tpe 2− approach zero as time grows toward infinity. The 
lack of imaginary roots leads to a lack of sine and cosine terms and their characteristic oscillatory 
effect. Thus, y(t) approaches yp slowly, exponentially and without oscillations (a stable system). 
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Figure 13.2 - Stable behaviors of underdamped system based on value of ξ 

 
 
 

Case 2: ξ = 1 (critically damped) 0))(( 21 =−− psps ;    
n

pp
τ

ξξ 1
,

2

21
−±−

=−−  = 
nτ

1
−   

 

The critically damped case, ξ = 1, yields real negative repeated roots (note that the negative signs for 
p1, p2 are shown explicitly).  
 
The total solution is thus 1 2( ) ( ) nt

py t y c c t e τ−= + + . 
 
As time passes, the real exponential nte τ/− approach zero as time grows toward infinity. The lack of 
imaginary roots leads to a lack of sine and cosine terms and their characteristic oscillatory effect. 
Thus, y(t) approaches yp exponentially and without oscillations (a stable system). 

 
 

Case 3: 0 < ξ < 1 (underdamped)  =−− 21 , pp  
nτ
ξξ 12 −±−

 = 
n

i
τ

ξξ 21−±−
 

 
The underdamped case, 0 < ξ < 1, yields distinct roots with a negative real part and an imaginary part.  
 

The total solution is thus 

2 21 1
/

1 2( ) n n n

i i
t t

t
py t y e c e c e

ξ ξ
ξ τ τ τ

− −
−

−

⎛ ⎞
⎜ ⎟

= + +⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

 
We then apply the Euler identities,  θθθ sincos iei +=   and  θθθ sincos ie i −=−  

yp 

y(t) 

ξ = 0 

0 < ξ < 1 

ξ  = 1 
 

Time, t 

case 2 

case 3 

case 4 

ξ  > 1 
 case 1 
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and define  1 0.5( )R Ic c ic= +  and 2 0.5( )R Ic c ic= − .  The total solution thus becomes 

 
2 2

/ 1 1
( ) cos( ) sin( )nt

p R I
n n

y t y e c t c tξ τ ξ ξ
τ τ

−
⎛ ⎞− −⎜ ⎟= + −
⎜ ⎟
⎝ ⎠

. 

 
As time passes and for all values of the damping factor in the range 0 < ξ < 1, the sines and cosines in 
the solution indicate that the system has a natural tendency to oscillate. The real exponential 

nte τξ /− approaches zero as time grows toward infinity. Because the term that causes oscillations is 
multiplied by a term that is decreasing to zero, the result is a damping oscillation. Hence, as time 
passes, y(t) approaches yp exponentially and with oscillations (a stable system). 
 
 

Case 4:  ξ = 0 (undamped)  1 2,p p− − =
nτ
ξξ 12 −±−

 =  
nn

i
ττ

±=
−

±
1  

 
The undamped case, ξ = 0, yields repeated roots with an imaginary part and no real part.  
 

The total solution is thus ( ) cos( ) sin( )p R I
n n

t ty t y c c
τ τ

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
 

 
As time passes, y(t) oscillates around yp with constant amplitude. This is due to the lack of a real 
exponential term to dampen the oscillations as time increases. Oscillations that neither grow nor die 
out indicate a system at the limit of stability. Any increase in ξ produces a damping oscillation as 
shown in Case 3. Any decrease in ξ produces an unstable system as shown in Case 5 below. 
 
 
Case 5:  ξ < 0 (unstable) 
All values of the damping factor, ξ, that are less than zero yield a solution that has a positive real part. 
As time passes, te+ will grow without bound and the process will display diverging (unstable) 
behavior. The behaviors of the solutions below are shown in Fig. 13.3. 
 
 

 −1 < ξ < 0: 
2 2

/ 1 1
( ) ( ) cos( ) sin( )nt

p R I
n n

y t y t e c t c tξ τ ξ ξ
τ τ

+
⎛ ⎞− −⎜ ⎟= + −
⎜ ⎟
⎝ ⎠

       

 

   ξ =  −1: 1 2( ) ( ) ( ) nt
py t y t c c t e τ+= + +  

 
   ξ <  −1: 1 2

1 2( ) ( ) p t p t
py t y t c e c e+ += + +  
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Figure 13.3 - Unstable behaviors of underdamped system based on value of ξ in Case 5 
 
 
13.7  Exercises 
 
Q-13.1 For each ODE below, determine the natural period of oscillation,τn, and damping factor, ξ. 

Based on the damping factor, describe the inherent nature of the system, e.g. 
   - is it naturally stable or unstable? 
   - does it have a natural tendency to oscillate or not? 
 
 

       a)  tty
dt

tdy
dt

tyd
=++ )(3

)(
4

)(
2

2
           where  0)()0(

0
==

=tdt
tdyy  

 

       b)  2
2

2
)(

)(
2

)(
tty

dt
tdy

dt
tyd

=++            where (0) 0y =   and  1)(

0
=

=tdt
tdy  

 

       c)  2)()(2)(2
2

2
=++ ty

dt
tdy

dt
tyd       where  0)()0(

0
==

=tdt
tdyy  

 

       d)  )2(sin)()(
2

2
ttx

dt
txd

=+                    where  (0) 0x =   and   1)(

0
=

=tdt
tdx

 

 

yp(t) 

y(t) 

– 1 < ξ < 0

Time, t 

ξ ≤ –1
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Q-13.2 Use Custom Process to explore the second order linear model form: 
 

)()()(2)(
2

2
2 tuKty

dt
tdy

dt
tyd

Pnn =++ ξττ  

 
 Perform this study in open loop to understand how the parameters impact system behavior. 
 
      a) Start by clicking on the Custom Process button on Loop Pro’s main screen; then choose 

Single Loop Process. When the simulation starts, notice that the graphic to the right of the 
scrolling plots is comprised of a Process button, Disturb(ance) button and Controller button 
(the C in the white circle). 

 
  Click the Process button on the graphic. This opens a “Construct Process and Disturbance 
 Models” form. On the Process Model tab, select Underdamped Linear Model and Self 
 Regulating (Stable) Processes. 
 
 Custom Process permits the construction of sophisticated model forms. Here we explore the 
 simple second order linear model form shown above.  
 
 For the underdamped self regulating linear process model, enter the following parameters: 
 
    Process Gain, KP   1   
    Natural Period, τPn  10    
    Damping Factor, ξ   0  
    Time Constant, τP   0 
    Lead Time, τPL       0 
    Dead Time, θP       0    
 
 We will not be studying the disturbance model, so when you are finished entering the process 

model parameters, click Done at the bottom of the form to start the simulation. 
 
      b) When the damping factor, ξ, equals zero (as is the case above), the process is said to be 

undamped.  When forced by a step in the controller output signal, an undamped process will 
oscillate with a period correlated to the natural period of oscillation, τn.  

  
 Specifically, the period of oscillation as measured on a strip chart, T, is related to τn as  
       

     
π

τ
2
T

n =  

   
 Step the controller output from 50 to 51 and let the measured process variable oscillate 

through a few complete cycles. Does the process display an undamped character? 
 
 Pause the process and view a fixed plot. Measure on the plot the amount of time, T, for the 

process to complete one cycle (from peak to peak or from trough to trough). Use the above 
relation to confirm that the natural period specified in your Custom Process model matches 
the behavior observed on the plot. 
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      c)  Return to your simulation and click the Process button on the graphic. On the “Construct 
Process and Disturbance Models” menu, change the natural period of oscillation to 15. As 
you did in step (b) above, step the controller output from 50 to 51. After the measured 
process variable completes a few complete cycles, pause the process and view a fixed plot.  

 
 From the plot, determine T, the time for the process to complete one cycle. Use the above 

relation of T to τn to confirm that the natural period specified in your Custom Process model 
matches the behavior observed on the plot. 

 
      d) Explore how the damping factor, ξ, impacts system behavior. Click the Process button on the 

graphic. On the “Construct Process and Disturbance Models” menu, change the natural 
period of oscillation, τn, to 10 and the damping factor, ξ, to 0.3. Step the controller output 
from 50 to 51, and when the dynamics die out, back to 50. 

 
 Repeat for a damping factor of 0.5, 0.7, 1.0 and 2.0. Describe how the system behavior you 

observe relates to the chapter discussion about the damping factor. 
 
 Now set the damping factor to -0.1 and step the controller output from 50 to 51. Describe 

how the system behavior you observe relates to the chapter discussion about the damping 
factor. 
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14.  Laplace Transforms 
 
14.1  Laplace Transform Basics 
Transforming functions from the time domain into the Laplace domain provides a convenient means 
for manipulating and solving linear ODEs with constant coefficients. In particular, Laplace 
transforms enable us to solve ODEs using algebra instead of calculus. They also provide a 
straightforward method for handling the mathematical time shift associated with dead time equations. 
Thus, complicated analysis can be performed in a straightforward manner. As we learned in previous 
chapters, few processes are accurately described by linear models with constant coefficients, but 
linearization and deviation variable techniques enable us to recast ODEs into a linear, constant 
coefficient form.  

Laplace transforms map an equation from the time domain (t) into the Laplace domain (s). 
The definition of the Laplace Transform is 

 
        

0

[ ( )] ( ) ( )stf t f t e dt F s
∞

−≡ ≡∫L  

 
 

The Laplace independent variable, s, is defined in the complex plane as s = a + bi, where a is the real 
part and b is the imaginary part. To help visualize the complex s plane, plotted below in Fig. 14.1 are 
the points A = 2 + i and B = – 2 – 2i. 

 

 
 

Figure 14.1 – The complex plane (s = a + bi) 
 
 While the mapping of a function f(t) → F(s) can be derived using the above definition, we are 
fortunate that tables have been created that list the transforms for common functions (see Appendix 
B). We detail the derivation of a few entries to show that the table has a basis in the theoretical 
definition of the Laplace Transform. 

 3 

 
3 

–3 

–3 

A 

B 

Im 

Re 

s plane 
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Example 1:  Show that attf =)(      →     2)(
s
asF =  

 

First apply the definition of the Laplace transform:    
0 0

[ ] st stat ate dt a te dt
∞ ∞

− −= =∫ ∫L  

 

Next, integrate by parts:  ∫∫ −= duvuvdvu ,  so tu = ; dtdu = ; 
s

ev
st−−

= ;  dtedv st−=  

                                

Substituting, we obtain 
00

[ ]
st stte eat a dt

s s

∞ ∞− −⎡ ⎤− −⎢ ⎥= −
⎢ ⎥
⎣ ⎦

∫L = 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −
−−

∞−

0
2)00(

s
ea

st
 

 

The solution is thus 2[ ] aat
s

=L  

 
     

 

Example 2:  Show that atetf −=)(       →     
as

sF
+

=
1)(  

 
 
Applying the definition of a Laplace transform and simplifying, we obtain 
 

 ( ) ( )

00 0

1[ ]at at st s a t s a te e e dt e dt e
s a

∞ ∞ ∞
− − − − + − += = = −

+∫ ∫L  

  

The solution is thus 1[ ]ate
s a

− =
+

L  

 
     

 

Example 3:  Show that ttf ωsin)( =       →     22)(
ω

ω
+

=
s

sF  

 
 
First apply the definition of a Laplace transform: 
 

 
0

[sin ] sin( ) stt t e dtω ω
∞

−= ∫L  

 

Next, recall that 
i
eet

titi

2
)sin(

ωω
ω

−−
=  
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Simplifying, we obtain  ( ) ( )

0

1[sin ]
2

s i t s i tt e e dt
i

ω ωω
∞

− − − +⎡ ⎤= −⎣ ⎦∫L  

 

 
( ) ( )

0

1 1 1 1
2 2

s i t s i te e
i s i s i i s i s i

ω ω

ω ω ω ω

∞
− − − +⎡ ⎤ ⎡ ⎤= − + = −⎢ ⎥ ⎢ ⎥− + − +⎣ ⎦⎢ ⎥⎣ ⎦

 

 

 2 2
1
2

s i s i
i s i s i s

ω ω
ω ω ω

+ − +⎡ ⎤= ⎢ ⎥+ − +⎣ ⎦
 

 

The solution is thus 2 2[sin ]t
s

ωω
ω

=
+

L  

 
 

     
 
14.2  Laplace Transform Properties 
In the previous section, we derived the Laplace transforms for three specific time domain functions. 
In this section, we explore Laplace transform properties and theorems, including the derivative and 
integral functions.  
 
Translation Property:  Show that [ ( )] ( )sf t e F sθθ −− =L .   
 
 
We first apply the definition of a Laplace transform: 
 

 
0

[ ( )] ( ) stf t f t e dtθ θ
∞

−− = −∫L   

 

Note that  )( θθ −−−− = tssst eee , and assume that   f(t) = 0 for t < 0.  We can then recast the above as 
 

 ( )[ ( )] ( ) ( )s s tf t e f t e d tθ θ

θ

θ θ θ
∞

− − −− = − −∫L  

Next, we define θτ −= t  and substitute: 
  

 
0

[ ( )] [ ( )] ( )s sf t f e f e dθ τθ τ τ τ
∞

− −− = = ∫L L       

 

We can then see that this is the definition of the Laplace transform, so we conclude that 
 

                           
 [ ( )] ( )sf t e F sθθ −− =L  
 
 

The translation property is useful for modeling the time shift associated with dead time. 
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Linearity Property:  Show that  [ ] [ ] [ ]1 1 2 2 1 1 2 2( ) ( ) ( ) ( )a f t a f t a f t a f t+ = +L L L  
 
 
Applying the Laplace transform definition, we obtain 
 

 [ ] [ ]1 1 2 2 1 1 2 2
0

( ) ( ) ( ) ( ) sta f t a f t a f t a f t e dt
∞

−+ = +∫L  

 

 1 1 2 2
0 0

( ) ( )st sta f t e dt a f t e dt
∞ ∞

− −= +∫ ∫  

 
 [ ] [ ]1 1 2 2( ) ( )a f t a f t= +L L  
 
 
We can now conclude that [ ] [ ] [ ]1 1 2 2 1 1 2 2( ) ( ) ( ) ( )a f t a f t a f t a f t+ = +L L L  
 
 
The linearity property states that the Laplace of a sum of functions equals the sum of the Laplace of 
the individual functions: 
 
 

First Derivative:  Show that  ( ) ( ) (0)df t sF s f
dt

⎡ ⎤ = −⎢ ⎥⎣ ⎦
L    where (0)f is in the time domain. 

 
 

First, we apply the Laplace transform definition: 
 

 
0

( ) ( ) stdf t df t e dt
dt dt

∞
−⎡ ⎤ =⎢ ⎥⎣ ⎦ ∫L  

Next, we integrate by parts: ∫∫ −= duvuvdvu ,  so   ( ); ; ( );st st df tu e du se dt v f t dv dt
dt

− −= = − = =  

  

Substituting, we obtain 
0

0

( ) ( ) ( )st stdf t f t e sf t e dt
dt

∞∞− −⎡ ⎤ = +⎢ ⎥⎣ ⎦ ∫L  

 

 
0

[0 (0)] ( ) stf s f t e dt
∞

−= − + ∫     

 

Recognizing that the last term is the definition of the Laplace Transform, we find that 
 

 ( ) ( ) (0)df t sF s f
dt

⎡ ⎤ = −⎢ ⎥⎣ ⎦
L  
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Integration:  Show that
0

1( ) ( )
t

f t dt F s
s

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦
∫L . 

 
Applying the Laplace transform definition, we obtain 
 

 
0 0 0

( ) ( )
t t

stf t dt f t dt e dt
∞

−
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∫ ∫ ∫L  

We must then integrate by parts: dtedve
s

vdttfdudttfu stst
t

−− =−=== ∫ ;1;)(;)(
0

 

 

Substituting yields 
0 0 00

1( ) ( ) ( )
t tst

stef t dt f t dt f t e dt
s s

∞ ∞−
−

⎡ ⎤
= − +⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫ ∫L  

 
 

Recognizing that the last term is the definition of the Laplace Transform, then we obtain 
 

 
0

1( ) ( )
t

f t dt F s
s

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦
∫L  

 
 

Final value theorem:     )(0
lim)(lim ssFstft →=∞→  

 
 

Initial value theorem:    )(lim)(0
lim ssFstft ∞→=→  

 

Example:  What is the final value (limit as t → ∞) of 
)3)(2)(1(

4)(
+++

+
=

ssss
ssF ? 

 
Applying the final value theorem, we obtain 
 

 )(0
lim)(lim ssFstft →=∞→  

 

 = ⎥
⎦

⎤
⎢
⎣

⎡
+++

+
→ )3)(2)(1(

4
0

lim
ssss

sss  

 

 
6
4

=  
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14.3  Moving Time Domain ODEs into the Laplace Domain 
For the process control analyses we explore later, the procedure we follow will be to move our time 
domain equations into the Laplace domain, combine and manipulate them using algebra (which is 
why we bother changing them into the Laplace domain), and then move the result back into the time 
domain for implementation. Hence, we must become comfortable with moving time domain 
equations into and out of the Laplace domain. 
 We solved the ODEs below in the time domain in chapter 13. While these examples all 
demonstrate moving from the time domain into the Laplace domain, following the steps in reverse 
will achieve the opposite. When working through these examples, note that the boundary (initial) 
conditions are applied early in the transformation process. Recall that applying the boundary 
conditions is one of the last steps when solving ODEs in the time domain. 
 

Example 1: Move the following time domain equation to the Laplace domain: 
 

 tty
dt

tyd 4)(2)(
=+    where   y(0) = 1 

 
Consulting the Laplace transform table in Appendix B, we see that 
 

 ( ) 2 [ ( )] [4 ]dy t y t t
dt

⎡ ⎤ + =⎢ ⎥⎣ ⎦
L L L  

 

Applying initial conditions,  2
4[ ( ) - (0)]+ 2 ( ) = sY s y Y s
s

 

 

and simplifying, we obtain 2

2

2
4142]+)[s(

s
s

s
sY +

=+=  

 
 
The equation can now be written in the Laplace domain as 
 

 
2

2
4( )
( 2)

sY s
s s

+
=

+
 

   

     
 
Example 2: Move the following time domain equation into the Laplace domain: 
 

 ( ) ( ) sindx t x t t
dt

= +    where   x(0) = 0 

 
Consulting the Laplace transform table in Appendix B, we find that 
 

 ( ) [ ( )] [sin ]dx t x t t
dt

⎡ ⎤ − =⎢ ⎥⎣ ⎦
L L L  
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Applying initial conditions, 
1

1)()]0()([ 2 +
=−−

s
sXxssX  

we can now write the equation in the Laplace domain as 
 

 
)1)(1(

1)( 2 −+
=

ss
sX  

 
 

     
 
Example 3: Move the following time domain equation into the Laplace domain: 
 

tty
dt

tdy
dt

tyd
=++ )(3)(4)(

2

2
   where  0)()0(

0
==

=tdt
tdyy  

 
Consulting the Laplace transform table, we see that 
 

 
2

2
( ) + 4 +3 [ ( )] [ ]( )d y t y t t

dtdt
dy t⎡ ⎤ ⎡ ⎤ =⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

L L L L         

 
Applying initial conditions yields 
 

 2
0

2 1 = )(3 +(0)4-)(4 )0()(  ][)(
s

sYyssY
dt

sysYs
t

tdy
+⎥

⎦

⎤
⎢
⎣

⎡

=
   

 

Simplifying, we obtain 
2

2 1]34)[(
s

sssY =++  

 
 
The equation can now be written in the Laplace domain as 
 

 
)1)(3(

1
)34(

1)( 222 ++
=

++
=

ssssss
sY  

 
 

     
 
Example 4: Move the following time domain equation into the Laplace domain: 
 

2
2

2
)()(2)( tty

dt
tdy

dt
tyd

=++    where  (0) 0y =   and   1)(

0
=

=tdt
tdy  

 
Consulting the Laplace transform table in Appendix B, we see that  
 

 [ ] 2
2

( )2 [ ]
2 ( ) dy t y(t) t

dtdt
d y t⎡ ⎤ ⎡ ⎤⎢ ⎥ + + =⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

L L L L       
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Applying initial conditions yields 
 

 3
0

2 2)((0)2-)(2 + )( ][)((0)
s

sYyssY
dt

sysYs
t

tdy
=+⎥

⎦

⎤
⎢
⎣

⎡
−−

=
 

 

Simplifying, we obtain 3

3

3
2 21212)( ][

s
s

s
sssY +

=+=++  

The equation can now be written in the Laplace domain as 
 

 
23

3

23

3

)()( 1

2
12

2 =)(
+

+
=

++

+

ss

s
sss

ssY  

 
     

 
Example 5: Move the following time domain equation into the Laplace domain: 
 

2)()(2)(2 2

2
=++ ty

dt
tdy

dt
tyd    where  0)()0(

0
==

=tdt
tdyy  

 
Consulting the Laplace transform table in Appendix B, we can see that 
 

 
2

2
( )2 2 [ ( )] [2]( ) dy t y t

dtdt
d y t⎡ ⎤ ⎡ ⎤+ + =⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

L L L L  

 
Applying initial conditions yields 
 

 
s

sYyssY
dt

sysYs
t

tdy 2)()]0(2)(22)0(2)(2 [
0

2 )(
=+−+⎥

⎦

⎤
⎢
⎣

⎡
−−

=
 

 

Simplifying, we obtain 2
2

2 1( )
1(2 2 1)
2

Y s
s s s s s s

= =
⎛ ⎞+ + + +⎜ ⎟
⎝ ⎠

 

 
The equation can now be written in the Laplace domain as 
 

 2 1 1 1 1
2 2 2 2

2 1( )
( ) ( )(2 2 1)

Y s
s s i s is s s

= =
− − + − − −⎡ ⎤ ⎡ ⎤+ + ⎣ ⎦ ⎣ ⎦

 

 
     

 
Example 6: Move the following time domain equation into the Laplace domain: 
 

)2(sin)()(
2

2
ttx

dt
txd

=+    where (0) 0x =  and   1)(

0
=

=tdt
tdx  
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Consulting the Laplace transform table in Appendix B, we see that 
 

 
2

2
( ) ( )  sin(2 )[ ] [ ]d x t x t t

dt

⎡ ⎤
+ =⎢ ⎥

⎢ ⎥⎣ ⎦
L L L  

 
Applying initial conditions yields 
 

 
4

2)()()( 2
0

2 (0)
+

=+⎥
⎦

⎤
⎢
⎣

⎡
−−

= s
sX

dt
tdxsXs

t
sx  

 

Simplifying, we obtain ( )2
2
2( ) 1 1

4
X s s

s
+ − =

+
 

 
The equation can now be written in the Laplace domain as 
 

 
)1)(4(

6)( 22

2

++

+
=

ss
ssX  

 
     

 
14.4  Moving Laplace Domain ODEs into the Time Domain 
Now that we have some understanding of Laplace transforms, let’s consider process oriented 
challenges. 
 

Example 1: A process response to a unit step forcing function is 
)13(

1)(
+

=
ss

sY . What is the 

original process ODE in the time domain? 
 
Solution: From the Laplace table (Appendix B), we know that 
 

 1[unit step]
s

=L  
 

Applying this, we can see that our original equation is actually 
 

 ⎥⎦
⎤

⎢⎣
⎡

+
=

ss
sY 1

)13(
1)(  

 

Simplifying, we find that  [ ] 1( ) 3 1Y s s
s

+ =  

 

so 
s

sYssY 1)()(3 =+  

 

Assuming y(0) = 0, we obtain [ ]
s

sYyssY 1)()0()(3 =+−  
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From Appendix B, we can see that the inverse Laplace, 1-L , is 
 

 1)()(3 =+ ty
dt

tdy       where  y(0) = 0 

 
     

 

Example 2: A process response to a forcing function U(s) is )(
1

)( sU
s

K
sY

P

P

+
=

τ
. What is the 

original process ODE in the time domain? 
 
Solution: First, we rearrange the equation as such: 
 
 [ ] )(1)( sUKssY PP =+τ  
 
 [ ] )()()( sUKsYssY PP =+τ  
 
Next, we assume that y(0) = 0: [ ] )()()0()( sUKsYyssY PP =+−τ  
 
From the table (Appendix B), we can see that the inverse Laplace transform, 1-L , can be written 
 

 )()()( tuKty
dt

tdy
PP =+τ     where  y(0) = 0 

 

With this result, we note that  ( )
( ) 1

P

P

KY s
U s sτ

=
+

 is called the transfer function for the first order 

without dead time ODE. 
     

 

Example 3:  A process response to a forcing function U(s) is )(
12

)( 22 sU
ss

K
sY

nn

p

++
=

ξττ
. 

What is the original process ODE in the time domain? 
 
Solution: We rearrange the equation as follows: 
 
 ( ) )(12)( 22 sUKsssY pnn =++ ξττ  
 

 ( ) ( ) )()(2)()( 22 sUKsYssYssY pnn =++ ξττ  
                

Next, we assume that y(0) = 0  and 0)(

0
=

=tdt
tdy :  
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  ( ) )()()0()(2)()0()(
0

22 sUKsYyssY
dt

tdysyssY pn
t

n =+−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=
ξττ  

  
From Appendix B, we can see that the inverse Laplace transform, 1-L , can be written as 
 

2
2 ( ) ( )2 ( ) ( )n n p

d y t dy t y t K u t
dt dt

τ τ ξ+ + = where 0)( and  0)0(
0

==
=tdt

tdyy  

 

Similar to the previous example, we note that  2 2
( )
( ) 2 1

p

n n

KY s
U s s sτ τ ξ

=
+ +

 is the transfer function for 

the second order without dead time ODE.   

     
 

Example 4:  Consider the following system: 
1

3
)(
)(

2 ++
=

sssU
sY .  Is this system stable?  Does it have a 

natural tendency to oscillate? 
 
Solution: Comparing to the general form of Example 3, we observe that   KP = 3; τn

2 = 1; 2τnξ = 
1; thus, τn = 1; and  ξ = 0.5. Since   0 < ξ < 1, the process is stable and underdamped (which 
means it does have a natural tendency to oscillate). 

 
     

 
 
14.5  Exercises 
 
Q-14.1 Showing all steps, derive the Laplace transform of cos(ωt). 
 
Q-14.2 Showing all steps, derive the Laplace transform of eat. 
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15.  Transfer Functions 
 
15.1  Process Transfer Functions 
A process transfer function, GP(s), is an equation in the Laplace domain that describes the dynamic 
response of the measured process variable to changes in the manipulated process variable (controller 
output signal). 
 

 
Time Domain: Consider the general time domain ODE describing a second order process: 
 

  
2

2
2
( ) ( )2 ( ) ( )n n P P

d y t dy t y t K u t
dtdt

τ τ ξ θ+ + = −       where   y(0) = 0, 
0

( ) 0
t

dy t
dt =

=              (15.1)        

 
As we learned in Chapter 13, the characteristic equation is 
 

 2 2
1 22 1 ( )( ) 0n ns s s p s pτ τ ξ+ + = − − =  

 

Also, the total solution is 1 2
1 2( ) ( )p t p t

Py t C e C e y t= + +  
 

or 1
1 2( ) ( ) ( )p t

Py t C C t e y t= + +  
 
We can express this as  [ ] )()part imagsin()part imagcos()( part) (real tytCtCety PIR

t +−=  
 
 
Laplace Domain: As detailed in example 2 below, the transfer function for the ODE of Eq. 15.1 is 
 

                                       2 2
1 2

( )( )
( ) ( )( )2 1

P Ps s
P P

P
n n

K e K eY sG s
U s s p s ps s

θ θ

τ τ ξ

− −
= = =

− −+ +
 

 
 
Note that the denominator of a transfer function is the characteristic equation of the time domain 
complementary solution. This is true for all transfer functions, including process transfer functions 
as shown below. 

 
 
 Recall that the roots of the characteristic equation indicate a system’s stability and natural 
tendency to oscillate. An unstable system results if any root has a positive real part, 1p te+ , because 
that term will grow without bound as time t grows to infinity. A stable system results if all roots have 
negative real parts, 1p te− , as these terms all die out (go to zero) as t grows to infinity. The tendency to 
oscillate is a consequence of sine and cosine terms in the solution that results from imaginary roots.  
 Because the denominator of a transfer function is the characteristic equation of the time 
domain complementary solution, then the roots of the denominator of a transfer function (called 
poles) similarly indicate system stability and tendency to oscillate. This knowledge will prove useful 
in control system analysis and design studies in the following chapters.  
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Example 1: Derive the following FOPDT (first order plus dead time) transfer function: 
 

                                     ( ) ( ) ( )p p P
dy t y t K u t

dt
τ θ+ = −        where  y(0) = 0           (15.2) 

 
Solution:  Consulting the Laplace table (Appendix B), we see that 
 

 [ ( ) (0)] ( ) ( )P
p psY s y Y s K e U sθτ −− + =  

 
Applying the initial condition yields 
 

 ( 1) ( ) ( )P
p Ps Y s K e U sθτ −+ =  

 
We can then rearrange to form the FOPDT transfer function: 
 

 ( )( )
( ) 1

Ps
P

P
P

K eY sG s
U s s

θ

τ

−

= =
+

 

 
 
Recall that the complementary equation for Eq. 15.2 is 
 

 ( ) ( ) 0p
dy t y t

dt
τ + =  

 
so the characteristic equation is 01 =+spτ  
 
This confirms the observation above that the denominator of a transfer function is the 
characteristic equation of the time domain complementary solution. 
 

     
 
 
Example 2: Derive the SOPDT (second order plus dead time) transfer function: 
  

                
2

2
2
( ) ( )2 ( ) ( )n n P P

d y t dy t y t K u t
dtdt

τ τ ξ θ+ + = −        where   y(0) = 0, 
0

( ) 0
t

dy t
dt =

=    (15.3) 

 
Answer: Consulting the Laplace table, we can see that 
 

  2 2 (0)( ) (0) 2 [ ( ) (0)] ( ) ( )Ps
n n P

dys Y s sy sY s y Y s K e U s
dt

θτ τ ξ −⎡ ⎤− − + − + =⎢ ⎥⎣ ⎦
 

 

Applying initial conditions yields 2 2 ( ) 2 ( ) ( ) ( )Ps
n n Ps Y s sY s Y s K e U sθτ τ ξ −+ + =  

 
We can then rearrange to form the SOPDT transfer function: 
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 2 2
( )( )
( ) 2 1

Ps
P

P
n n

K eY sG s
U s s s

θ

τ τ ξ

−
= =

+ +
 

 
Recall that the complementary equation for Eq. 15.3 is 
 

 
2

2
2
( ) ( )2 ( ) 0n n

d y t dy t y t
dtdt

τ τ ξ+ + =  

 

so the characteristic equation is 2 2 2 1 0n ns sτ τ ξ+ + =  
 
This again confirms the observation that the denominator of a transfer function is the 
characteristic equation of the complementary solution. 

 
     

 
 

15.2  Controller Transfer Functions 
Analogous to a process transfer functions, control algorithm transfer functions, GC(t), are Laplace 
domain equations that describe the dynamic behavior of the controller output signal as it responds to 
changes in the controller error. The general form of a controller transfer function is 
 

 
( )( )
( )C

U sG s
E s

=                                                                     (15.4) 

  For all derivations, we observe that at the design level of operation, the control error should 
be zero. Hence, when u(t) = ubias, then e(t) = 0. Consistent with this observation, we use the following 
perturbation variable definitions: 
 

 ( ) ( )P
biasu t u t u= −                                                               (15.5a) 

 

 ( ) ( ) 0Pe t e t= −                                                                    (15.5b) 
 

Example: P-Only Control  
 
The P-Only control algorithm is ( ) ( )bias Cu t u K e t= +  
 
Rearranging to group like terms gives us 
 
 ( ) [ ( ) 0]bias Cu t u K e t− = −  
 

Employing Eq. 15.5 yields ( ) ( )P P
Cu t K e t=  

 
Using the Laplace table, we can move into the Laplace domain: 
 
 ( ) ( )CU s K E s=  
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This gives us the P-Only transfer function: 
 

 ( )( )
( )C C

U sG s K
E s

= =                           (15.6) 

 
     

 
Example: PI Control 
 

The PI control algorithm is 
0

( ) ( ) ( )
t

C
bias C

I

Ku t u K e t e t dt
τ

= + + ∫  

 
Rearranging to group like terms gives us 
 

 
0

( ) [ ( ) 0] [ ( ) 0]
t

C
bias C

I

K
u t u K e t e t dt

τ
− = − + −∫  

Employing Eq. 15.5 yields 
0

( ) ( ) ( )
t

P P PC
C

I

Ku t K e t e t dt
τ

= + ∫  

 
We can then use the Laplace tables and assume the process starts at steady state, to give us 
 

 1( ) ( ) ( )C
C

I

K
U s K E s E s

sτ
⎛ ⎞= + ⎜ ⎟
⎝ ⎠

   

 
This results in the PI transfer function: 
 

 ( ) 1( ) 1
( )C C

I

U sG s K
E s sτ

⎛ ⎞
= = +⎜ ⎟

⎝ ⎠
            (15.7) 

 
     

 
 
Example: PID Control         
 
The PID w/ derivative on error control algorithm is 
 

 
0

( )( ) ( ) ( )
t

C
bias C C D

I

K de tu t u K e t e t dt K
dt

τ
τ

= + + +∫  

 
Rearranging to group like terms gives us 
 

 
0

[ ( ) 0]( ) [ ( ) 0] [ ( ) 0]
t

C
bias C C D

I

K d e tu t u K e t e t dt K
dt

τ
τ

−
− = − + − +∫  
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Employing Eq. 15.5 yields 
0

( )( ) ( ) ( )
t P

p p pC
C C p

I

K de tu t K e t e t dt K
dt

τ
τ

= + +∫  

 
We then consult the Laplace tables and assume the process starts at steady state to give us 
 

 1( ) ( ) ( ) ( )C
C C D

I

K
U s K E s E s K sE s

s
τ

τ
= + +  

This results in the PID transfer function: 
 

 ( ) 1( ) 1
( )C C D

I

U sG s K s
E s s

τ
τ

⎛ ⎞
= = + +⎜ ⎟

⎝ ⎠
            (15.8) 

 
     

 
15.3  Poles of a Transfer Function and Root Locus 
The roots of the denominator of a transfer function are traditionally called the poles of the transfer 
function. Because the Laplace domain is defined in the complex plane (i.e. s = a + bi), a pole has a 
real part and an imaginary part. A root locus plot shows the location of a system’s roots/poles on the 
complex plane. 
 

Example 1: Locate these points on the s plane:   A = 1 + i;    B = −2i;    C = −2 −i 
 
Solution: 

3

3

–3

–3

A

B

C

Im

Re

s plane  
A negative real part of the root means the term 1p te− goes to zero as time increases to infinity. 
Thus, the dynamics will die out and the system will be stable. All of the roots must have negative 
real parts for this to hold true. If even one root has a positive real part, it will eventually dominate 
and push the system to instability. 
 Real parts are negative on the left-hand side of the s plane and they are positive on the right-
hand side. Consequently, all roots/poles describing a stable system lie in the left-hand side of the 
complex plane. 
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Re

Im

stable unstable

s plane  
 

Figure 15.1 – Stable and unstable sides of the complex plane 
 

     
 
Example 2: What do the poles of the following transfer function indicate about the system 
behavior? 
 

 
)5.2)(1(

1)(
++

=
ss

sGsys  

 
Solution: The roots/poles are p1 = −1.0 and p2 = −2.5 as plotted on the s plane below: 
 

3

3

–3

–3

p2

Im

Re
p1

 
 
The plot indicates that the system is stable and does not oscillate because the poles are real and 
negative. 

     
 
Example 3: What do the poles of the following transfer function indicate about the system 
behavior? 
 

 
)5.2)(2(

1)(
+−

=
ss

sGsys  
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Solution: The roots/poles are p1 = +2.0 and p2 = −2.5 as plotted on the s plane below: 
 

3

3

–3

–3

p2

Im

Re
p1

 
   
The plot indicates that the system is unstable because one of the poles is positive and hence will 
grow without bound as time passes. The system will not oscillate as it goes unstable because 
neither pole has imaginary parts. 

     
 
Example 4: What do the poles of the following transfer function indicate about the system 
behavior? 
 

 
)54(

1)( 2 ++
=

ss
sGsys  

 
Solution: The roots/poles are p1 = −2 + i and p2 = −2 − i as plotted on the s plane below: 
 

3

3

–3

–3

p2

Im

Re

p1

 
 
Because the real part of both poles is negative, the system is stable. The system will have a 
natural tendency to oscillate due to the imaginary part of the roots/poles.    

 
     

 
15.4  Poles as Complex Conjugates 
If the roots/poles have an imaginary component, they will always be present as complex conjugate 
pairs of the form a ± bi. That is, the pair will have the same real part and reflecting imaginary parts.  
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 The property most appealing about the complex conjugate form is that when the pairs are 
added together or multiplied together, they yield real numbers with no imaginary parts. This is 
important because the processes we work on are real, and the solutions we devise must also be real 
(would you want your boss to give you an imaginary raise?). 
 

Example 5: Show that 1 + 2i and 1 − 2i are complex conjugates. 
 
Answer: Beyond the fact that they have the proper a ± bi form, when we add and multiply them 
together, they yield real numbers with no imaginary parts: 
 

(1 + 2i) + (1 − 2i) = 2   and     (1 + 2i)(1 − 2i) = (1 + 2i − 2i − 4i2) = 5 
 

     
 
15.5  Poles of the Transfer Function Indicate System Behavior 
As illustrated in Fig 15.2, as the roots/poles move farther out on the negative real axis, the dynamics 
become faster. As the roots/poles move farther out on the imaginary axis, the oscillatory nature of the 
response increases. 
 
 

Im

Re

stable unstable

faster
dynamics

increasing
oscillation

Im

Re

stable unstable

faster
dynamics

increasing
oscillation

 
 

Figure 15.2 –Pole location indicates system behavior 
 
 
To show that the roots/poles are related to system behavior, we can perform an analysis similar to the 
one done in the time domain in Chapter 13. Here we consider the same four cases presented earlier in 
the time domain. 



 

152 
 

Practical Process Control® by Douglas J. Cooper 
Copyright © 2005 by Control Station, Inc. 

All Rights Reserved 

        
 
                                              Time Domain                                                        Laplace Domain 
 

Figure 15.3 - Stable behaviors of underdamped system based on value of ξ 
 
 

Case 1: ξ > 1 (overdamped) 
2

1 2
1

,
n

p p
ξ ξ

τ
− ± −

= ;  1 2
1 2( ) ( ) p t p t

py t y t C e C e− −= + +  

Transfer function: 
))((

)(
21 psps

K
sG P

++
=  

 
The overdamped response has distinct roots/poles on the negative real axis. The time domain 
response becomes slower and slower as ξ gets larger, but it is always stable and never oscillates.  
 
 

Case 2: ξ = 1 (critically damped) 21, pp  = 
nτ

1
− ;   1 2( ) ( ) ( ) nt

py t y t C C t e τ−= + +  

 

Transfer function: ( ) 1 1( )( )

p

n n

K
G s

s s
τ τ

=
+ +

 

 
When critically damped, the roots/poles are repeated on the negative real axis. There is no oscillation 
in the response because there is no imaginary part leading to sine and cosine terms in the roots/poles. 

yp 

y(t) 

ξ = 0 

0 < ξ < 1 

ξ = 1 
 

Time, t 

case 2 

case 3 

case 4 

ξ > 1 
 case 1 

case 4 

case 3 

case 2 

+ 1/τn

– 1/τn

Re 

Im 

case 1 

s plane 
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Case 3: 0 < ξ < 1 (underdamped) =21, pp
n

i
τ

ξξ 21 −±−
; 

 
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
−

−
+= − )

1
sin()

1
cos()()(

22
/ tCtCetyty

n
I

n
R

t
p

n

τ
ξ

τ
ξτξ  

 

Transfer function: 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
−−−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
+−−

=

isis

K
sG

nnnn

P

τ
ξ

τ
ξ

τ
ξ

τ
ξ 22 11

)(  

 
As ξ varies in the continuum from zero to one, the roots/poles move from the imaginary axis to the 
real axis. The roots/poles are always in complex conjugate pairs of the form a ±  bi. The time domain 
response shows oscillation that dampens. The closer ξ gets to 1, the greater the damping. 
 

Case 4:  ξ = 0 (undamped) =21, pp
n

i
τ

± ;   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+= )sin()cos()()(

n
I

n
Rp

tCtCtyty
ττ

 

 

Transfer function: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

==

nn

p

isis

K
sU
sYsG

ττ
)(
)()(  

 
At the limit of stability, the roots/poles are located on the imaginary axis and have no real part. The 
time domain response shows oscillation that neither grows nor dies out. Thus, the oscillations 
maintain constant form and continue forever.  
 
Case 5:  ξ < 0 (unstable) 
 
All values of the damping factor, ξ, that are less than zero yield a solution that has a positive real part. 
Hence, as time passes, te+ will grow without bound, an unstable result. All roots/poles will fall on the 
right-hand side of the s-plane.  

 
 

15.6  Exercises 
 

Q-15.1 What are the steady state gain and time constants for a process described by the following 
transfer function (pay careful attention to the form of the equation)? 

                                                       
)2)(10(

7)(
++

=
ss

sGP  
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Q-15.2 Starting with the Laplace domain transfer function, show all steps and derive the time domain 
ODE for the Second Order Plus Dead Time Integrating form: 

  

 Laplace: ( )( )
( ) ( 1)

Pp
P

p

sK eY sG s
U s s s

θ

τ

−
= =

+
 

 

 Time: 
2

2
( ) ( ) ( )p p P

d y t d y t K u t
d td t

τ θ+ = −  

 
 
Q-15.3 Starting with the time domain ODE, show all steps and derive the Laplace domain transfer 

function for the Second Order Plus Dead Time Overdamped with Lead Time form: 

 

 Time: ][ )(
)()(

)(
)(

)(
212

2

21 td
tud

tuKty
td
tyd

td
tyd P

Lpp
θ

τθττττ
−

+−=+++  

 

 Laplace: 
)1)(1(

)1(
)(
)()(

21 ++

−+
==

ss
e ssK

sU
sYsG

PLp
P

ττ

θτ
 

 
 
Q-15.4 Starting with the continuous position form of the Integral Only controller, show all steps to 

derive the I-Only transfer function. 

 
Q-15.5 The dynamics of a process are described by the following ODE, which is in perturbation 

variable form: 
 

)(3)(4)(5)(6
2

2
tuty

dt
tdy

dt
tyd

=++  

 
 a) Showing all steps, determine the transfer function, GP(s), for this process. 
 
 b) Determine the poles of the transfer function. 

 
 c) Plot the poles on the complex plane. 
 

 d) Based on the pole locations, describe the general dynamic behavior of this process.  

                 Be sure to briefly explain your reasoning. 



 

155 
 

Practical Process Control® by Douglas J. Cooper 
Copyright © 2005 by Control Station, Inc. 

All Rights Reserved 

16.  Block Diagrams 
 
16.1  Combining Transfer Functions Using Block Diagrams 
Laplace domain transfer functions enable us to manipulate complex equations using simple algebra. 
For example, consider two non-interacting draining tanks. If we assume that drain flow rate is 
proportional to hydrostatic head, we can write the equations using perturbation variables: 
 

The tank 1 ODE is )()(
)(

011
1

1 tFth
dt

tdh
A PP

P

C =+α       where 0)0(1 =Ph          (16.1) 

 
In the Laplace domain, Eq. 16.1 becomes 
 
 1 1 1 1 0( ) ( ) ( )CA sH s H s F sα+ =             (16.2) 
     

The tank 1 transfer function is thus ( ) 1/
/1

)(
)(

)(
11

1

0

1
1 +

==
sAsF

sH
sG

C
P α

α
                                        (16.3) 

 

The tank 2 ODE is )()(
)(

1122
2

2 thth
dt

tdh
A PP

P

C αα =+    where 0)0(2 =Ph         (16.4) 

 
In the Laplace domain, Eq. 16.4 becomes 
 
 2 2 2 2 1( ) ( ) ( )CA sH s H s H sα+ =             (16.5) 
 

The tank 2 transfer function is thus ( ) 1/
/

)(
)(

)(
22

21

1

2
2 +

==
sAsH

sH
sG

C
P α

αα
                                      (16.6) 

 
 
With the above as a basis, we write general coupled process ODEs as 
 

Process 1: )()(
)(

11
1

1 tuKty
dt

tdy
PP =+τ ; 0)0(1 =y         ⇒        

1)(
)(

)(
1

11
1 +

==
s

K
sU
sY

sG
P

P
P τ

         (16.7) 

 
 

Process 2: )()(
)(

122
2

2 tyKty
dt

tdy
PP =+τ ; 0)0(2 =y     ⇒        

1)(
)(

)(
2

2

1

2
2 +

==
s

K
sY
sY

sG
P

P
P τ

       (16.8) 

 
 
Combining the time domain ODE’s of Eqs. 16.7 and 16.8 into a single second-order differential 
equation describing how y2(t) responds to changes in u(t) requires manipulation of ODEs as follows: 
 

Solve Eq. 16.8 for y1(t): 
2

2 2

1
2

( ) ( )
( )

P

P

dy t y t
dty t
K

τ +
=              (16.9) 
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Take the derivative of Eq. 16.9: 

2
2 2

2 2
1

2

( ) ( )
( ) P

P

d y t dy t
dy t dtdt

dt K

τ +
=           (16.10) 

 
Substitute Eqs. 16.9 and 16.10 into Eq. 16.7: 
 

                                         

2
2 2 2

2 2 22

1 1
2 2

( ) ( ) ( ) ( )
( )

P P

P P
P P

d y t dy t dy t y t
dtdt dt K u t

K K

τ τ
τ

+ +
+ =                   (16.11) 

 
Multiply both sides by KP2 and combine like terms: 
 

 

                               )()(
)(

)(
)(

212
2

212
2

2

21 tuKKty
dt

tdy
dt

tyd
PPPPPP =+++ ττττ                       (16.12) 

  
 
In the Laplace domain, we combine the transfer functions using simple algebra, which is the reason 
for converting from the time domain into the Laplace domain and back: 

 

                  1 2 2 1 2
system 1 2

1 1 2

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) 1 1

P P
P P

P P

Y s Y s Y s K KG s G s G s
U s Y s U s s sτ τ

⎛ ⎞⎛ ⎞
= = = = ⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠

                     (16.13) 

 
and thus 

                                                             2 1 2
2

1 2 1 2

( )
( ) ( ) 1

P P

P P P P

Y s K K
U s s sτ τ τ τ

=
+ + +

                                   (16.14) 

 
As we expect, converting Eq. 16.14 back to the time domain yields Eq. 16.12. This comparison of 
time domain versus Laplace domain equation manipulation helps demonstrate the benefit of using the 
Laplace domain in our subsequent analyses. 
 A block diagram is a convenient way to visualize the combination and manipulation of 
Laplace domain equations. As shown in Fig. 16.1, we use a summer block (a circle) to add block 
inputs and a multiplier block (a square) to multiply block inputs: 
 

 
 
 

Summer: 
 
 
 
 

 

    Multiplier: 
 

 
Figure 16.1 – Blocks used to create a Laplace domain block diagram 
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Example 1: Show this manipulation using block diagrams:    Y(s) = A(s) − B(s) − C(s) 
 
Solution: Below are two of several possibilities: 

        

+ +– –
A(s)

B(s) C(s)

Y(s)

                      

A(s)

B(s)

C(s)

Y(s)+

–
–

 
 
                    [A(s) − B(s)] − C(s) = Y(s)                                 A(s) − B(s) − C(s) = Y(s) 
   

     
 
Example 2: Show this manipulation using block diagrams:   Y(s) = A(s)G1(s)G2(s) 
 
Solution: Below are two of several possibilities: 
 
 

                   
 

          Y(s) = B(s)G2(s)                                                           Y(s) = C(s)G1(s)       
          B(s) = A(s)G1(s)                                                           C(s) = A(s)G2(s)         
          Y(s) = A(s)G1(s)G2(s)                                                   Y(s) = A(s)G1(s)G2(s)   
 
 

     
 

Example 3: Show using block diagrams:   Y(s) = [A(s) − B(s)]G(s)  
 
Solution: Below are two of several possibilities: 
 

        

+
A(s)

B(s)

G(s)
Y(s)

–

                              

A(s)

B(s)

G(s)

G(s)

Y(s)+

–

 
 
           Y(s) = [A(s) − B(s)]G(s)                            Y(s) = A(s)G(s) − B(s)G(s) = [A(s) − B(s)]G(s) 
 

     

G1(s) G2(s) 
B(s) Y(s) A(s) 

G2(s) G1(s) 
C(s) Y(s) A(s) 
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Example 4: Show using block diagrams:   )(
1

1)(
1

)( sM
s

sU
s

K
sY

PP

P
+

+
+

=
ττ

 

 
Solution: Below is one of several possibilities: 
 
 

+ Y(s)

1
1

+sPτ

U(s)

M(s)

KP

+
 

 
                              

1 1( ) [ ( ) ( )] ( ) ( )
1 1 1

P
P

P P P

KY s U s K M s U s M s
s s sτ τ τ

⎡ ⎤
= + = +⎢ ⎥+ + +⎣ ⎦

 

 
     

 
16.2  The Closed Loop Block Diagram 
As shown in Fig. 16.2, the closed loop block diagram in the time domain is 
 
 

 
 

Figure 16.2 – Closed Loop Block Diagram in Time Domain 
 
 
 
In the Laplace domain, the closed loop block diagram is as shown in Fig. 16.3: 

 

Controller 
Final 

Control 
Element 

Process 

Disturbance 

   Measurement          
Sensor/Transmitter     

+ 

ysp(t) e(t) u(t) m(t) 
+ 

+ y(t) 

y(t) ym(t) 

d(t) 

– 
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Figure 16.3 – Closed Loop Block Diagram in Laplace Domain 
 
Notice that it is not only the process and controller that have transfer functions describing their 
dynamic behavior. As shown in the block diagram of Fig. 16.3, final control element (e.g. valve, 
pump) and measurement sensor also have transfer functions: 
 

           
)(
)(

)(
sE
sU

sGC =               
)(
)(

)(
sU
sM

sGF =   
)(
)(

)(
sY
sY

sG M
M =                    (16.15) 

                            controller                      final control element               measurement sensor 
 
The block diagram shows that: 
 
 E(s) = Ysp(s) − YM(s)           (16.16) 
 
The block diagram also shows that the transfer function for the measured process variable is 
somewhat more complicated when a disturbance variable is included. Following the block diagram 
rules presented above, the transfer function is: 
 
 Y(s) = M(s)GP(s) + D(s)GD(s)          (16.17) 
 
16.3  Closed Loop Block Diagram Analysis 
Building on the principles discussed earlier in this chapter, we can write a series of equations as we 
step around the closed loop block diagram in an orderly fashion. A convenient place to start in the 
balance is with process variable Y(s) as it exits the block diagram on the right. The equations thus 
develop as: 

GC(s) 

Final 
Control 
Element 

Process

Disturbance

   Measurement                
Sensor/Transmitter            

+ 
Ysp(s) E(s) U(s) M(s)

+ 

+ 

Y(s) YM(s) 

D(s)

– 
Controller 

GF(s) GP(s)

GD(s)

GM(s)

Y(s)
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                                                    Y(s) = M(s)GP(s) + D(s)GD(s)                                                  (16.18a) 
 

    M(s) = U(s)GF(s)                                                                     (16.18b) 
 

    U(s) = E(s)GC(s) = [Ysp(s) − YM(s)]GC(s)                                 (16.18c) 
 

    YM(s) = Y(s)GM(s)                      (16.18d) 
 
Substituting Eq. 16.18b into Eq. 16.18a, and Eq. 16.18d into Eq. 16.18c yields: 
 
 Y(s) = U(s)GF(s)GP(s) + D(s)GD(s)         (16.19a) 
 

 U(s) = [Ysp(s) − Y(s)GM(s)]GC(s)        (16.19b) 
 
Substituting Eq. 16.19b into Eq. 16.19a yields: 
 
 Y(s) = [Ysp(s) − Y(s)GM(s)]GC(s)GF(s)GP(s) + D(s)GD(s)                (16.20) 
        
                                 = Ysp(s)GC(s)GF(s)GP(s)  − Y(s)GM(s)GC(s)GF(s)GP(s) + D(s)GD(s)            (16.21) 
 
Rearrange to obtain 
 

                             Y(s)[1+ GM(s)GC(s)GF(s)GP(s)] = Ysp(s)GC(s)GF(s)GP(s)  + D(s)GD(s)            (16.22) 
 
Combining these equations and solving for Y(s) produces the following closed loop Laplace equation: 
 

             )(
)()()()(1

)(
)(

)()()()(1
)()()(

)( sD
sGsGsGsG

sG
sY

sGsGsGsG
sGsGsG

sY
MPFC

D
sp

MPFC

PFC

+
+

+
=     (16.23) 

 
Here we realize that a complex transfer function can be constructed from a combination of simpler 
transfer functions. As this analysis reveals, the closed loop transfer functions are 
 
     Process Variable to Set Point (when disturbance is constant): 
 

                                                 
)()()()(1

)()()(
)(

)(
sGsGsGsG

sGsGsG
sY

sY

MPFC

PFC

sp +
=  

 
     Process Variable to Disturbance (when set point is constant): 
  

                                                    
)()()()(1

)(
)(
)(

sGsGsGsG
sG

sD
sY

MPFC

D

+
=  

 
With the controller in automatic (closed loop), if the dynamics are disturbance driven or set point 
driven, the characteristic equation that reveals the inherent dynamic character of the system is the 
denominator of the transfer function, which in this case is 
 
                                                   0)()()()(1 =+ sGsGsGsG MPFC                                               (16.24) 
    
Recall that the roots of the characteristic equation (the poles of the transfer function) indicate whether 
or not a system is stable and the degree to which it has tendency to oscillate. The analysis above 
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reveals that the roots of Eq. 16.24 will provide this same important information for a closed-loop 
control system. 
 
16.4  Simplified Block Diagram 
While the final control element, process and sensor/transmitter have individual dynamics, from a 
controller’s viewpoint it is impossible to separate these different behaviors. A controller sends a 
signal out on one wire and sees the response in the process variable when the measurement returns on 
another wire. As a consequence, the individual gains, time constants and dead times all lump together 
into a single overall dynamic response. A lumped or simplified block diagram can represent this as: 
 

Ysp(s) E(s) U(s)

Y(s)

GC(s) GP(s)
+

–

Y(s)

Controller Process

 
 

Figure 16.3 – Simplified Closed Loop Block Diagram in Laplace Domain 
 
As before, we write a balance around the closed loop block diagram of Fig. 16.3 that starts and ends 
with Y(s): 
                                                    Y(s) = U(s)GP(s)  
 

    U(s) = E(s)GC(s) = [Ysp(s) − Y(s)]GC(s) 
 
Combining these equations and solving for Y(s) produces the closed-loop process variable to set point 
transfer function that describes the dynamic response of the measured process variable in response to 
changes in set point: 
 

                                                       
)()(1

)()(
)(
)(

sGsG
sGsG

sY
sY

PC

PC

sp +
=                                                    (16.25) 

 
 

The characteristic equation for this closed-loop system is the denominator of the transfer function of 
Eq. 16.25, or: 
 
                                                          0)()(1 =+ sGsG PC                                                             (16.26) 
 
The roots of Eq. 16.26, which are the poles of the transfer function of Eq. 16.25,  indicate whether or 
not the closed-loop system is stable and the degree to which it has tendency to oscillate. 
 
16.5  The Padé Approximation 
Before we continue with our analysis of block diagrams, we recognize the need for a rational 
expression for dead time in the Laplace domain, se θ− . This will permit us to employ normal algebraic 
manipulations during our analysis. The Taylor series expansion for se θ−  is: 
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2 2 3 3 4 4

1
2! 3! 4!

s s s se sθ θ θ θθ− = − + − + + K                                                (16.27) 

For very small values of dead time we can truncate the series as: 
 

                                                1se sθ θ− ≅ −                                                                     (16.28) 
 
A Padé approximation is a clever expression that more accurately approximates the Taylor series of 
Eq. 16.27 while providing the rational expression we seek. There are a family of Padé expressions 
that become increasingly accurate as they increase in complexity. A simple Padé form we use in the 
next section is exact for the first three terms of the Taylor series expansion and quite close for the 
fourth term: 
 

                                                               
s
se s

θ
θθ

+
−

≅−

2
2  

which we can show using long division yields the series: 
  

                                                     K+−+−=
+
−

42
1

2
2 3322 sss

s
s θθθ

θ
θ

 

 
 
16.6  Closed Loop Analysis Using Root Locus 
The poles of interest for our simplified closed loop system are the roots of Eq. 16.26: 
 
                                                               0)()(1 =+ sGsG PC  
 
This analysis assumes that the process behavior, and thus, the process transfer function, remains 
constant. Adjustable controller tuning provides the ability to move the poles (root location), thereby 
manipulating closed-loop system behavior. 
 

Example 1: A true first order process without dead time, with a process gain KP = 1 and a time 
constant 1=Pτ , is under P-Only control. What is the impact of controller gain, KC , on closed 
loop system behavior? 
 

Solution: A first order process transfer function is  
1

)(
+

=
s

K
sG

P

P
P τ

 

 
From the problem statement, we know that 
 

 
1

1)(
+

=
s

sGP  

 
The P-Only controller transfer function is 
 
 CC KsG =)(  
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Substituting GP(s) and GC(s) into the characteristic equation, we obtain 
 

 0
1

1)()(1 =
+

+=+
s
K

sGsG C
PC  

 
Rearranging yields 01 =++ CKs  
 
We recall that s is defined in the complex plane as bias += , so 
 
 iKbia C 001 +=+++  
 
Equating like real term gives us 01 =++ CKa  
 
and equating like imaginary terms: ibi 0=  
 
We now see that the roots/poles as a function of KC are 
 
 KC        a =−KC −1       b = 0 
 

   0            −1                   0  
  10          −11                  0 
 100        −101                 0 
 
We can examine this result on the s plane of Fig. 16.4 and note that the single root always lies on 
the real axis as long as KC ≥ −1. For increasing positive values of KC, the real root becomes 
increasingly negative: 
 

Im

– 1

KC increases
Re

KC = 0

s plane  
Figure 16.4 – P-Only root locus (root location) in the complex plane 

 
All positive values of controller gain, KC, yield a solution with no imaginary part. Hence, a true 
first order system under P-Only control cannot be made to oscillate, no matter how large a KC 
value used. It is also unconditionally stable for all positive KC because the root always remains on 
the left hand side of the s plane.  
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 It is interesting to note that a true first order system can remain stable even when the 
controller gain has the wrong sign. For example, if KC = −0.5, then  a = −0.5 and  b = 0. This root 
is located on the left hand side of the s plane, and thus, the system will remain stable (though 
control would be poor). A value of KC = −10 yields an a = 9.0 and b = 0, which produces a root 
located on the right hand side of the s plane, indicating that the system is unstable. As the next 
example illustrates, even a small value of process dead time dramatically changes the inherent 
dynamic nature of a closed loop system. 

 
     

 
 
 
 
 
 
 
 
  

Example 2: A first order plus dead time (FOPDT) process with a process gain, KP = 1, a time 
constant, 1=Pτ , and a dead time, 1.0=Pθ , is under P-Only control. What is the impact of 
controller gain, KC , on closed loop system behavior? 
 

Solution: A FOPDT process transfer function is ( )
1

Ps
P

P
P

K eG s
s

θ

τ

−
=

+
. 

 
 

From the problem statement, we know that 
 

 
1

)(
1.0

+
=

−

s
esG

s

P  

 
The P-Only controller transfer function is 
 
 CC KsG =)(  
 
Substituting GP(s) and GC(s) into the characteristic equation, we obtain 
 

 0
1

1)()(1
1.0

=
+

+=+
−

s
eK

sGsG
s

C
PC  

 
We can then employ the Padé approximation: 
 

 
s
se s

1.02
1.021.0

+
−

=−  

 
Substituting the Padé approximation into the characteristic equation gives us 
 

 2 0.11 0
2 0.1 1

CKs
s s

−⎛ ⎞+ =⎜ ⎟+ +⎝ ⎠
  

 

Rearranging yields 022)1.01.2(1.0 2 =++−+ CC KsKs  
 



 

165 
 

Practical Process Control® by Douglas J. Cooper 
Copyright © 2005 by Control Station, Inc. 

All Rights Reserved 

We can then multiply both sides by 10 and then solve for the roots of the characteristic equation: 
 

 
2

1 2
(21 ) (21 ) 4(20 20 )

,
2

C C CK K K
p p

− − ± − − +
=  

 

 
221 (441 42 80 80 )

       
2

C C C CK K K K− + ± − + − −
=  

 

 When the roots are real:  
221 122 361

       
2

C C CK K K− + ± − +
=   

 

When they have imaginary parts: 
221 122 361

   
2

C C CK i K K− + ± − + −
=  

 
We can now solve for the roots using various values of KC: 
 
 KC        P1            P2 
 0   −1.0        −20 
 1   −2.25        −17 
 2   −4.0        −15 
 3   −8.0        −10 
               repeated real roots  → 3.0345  −8.99         −8.99 
 3.04  −8.98 +    0.4i           −8.98 −   0.4i 
 3.2   −8.90 +  2.19i           −8.90 −  2.19i 
 4.0   −8.50 +  5.27i           −8.50 −  5.27i 
 10.0  −5.50 +  13.8i           −5.50 −  13.8i 
 20.0  −0.50 + 20.49i          −0.50 − 20.49i 
                    limit of stability → 21.0         0 +  20.98i                 0 − 20.98i 
 25.0         2 + 22.72i                 2 − 22.72i 
 50.0    14.5 + 28.46i            14.5 − 28.46i 
 
The limit of stability is the point where the roots fall directly on the imaginary axis (the real part 
of the root is zero). This is considered the limit of stability because as soon as the roots cross over 
to the positive real part of the s plane, the system becomes unstable.  
 An important observation from this example is that the addition of a small amount of process 
dead time is enough to transform a process that will not even oscillate (as shown in Example 1) 
into a process that will oscillate and then go unstable as controller gain, KC, increases.  
 To gauge the accuracy of the Padé approximation, we could construct this problem in Custom 
Process. There we will find that the limit of stability for this system is actually closer to a 
controller gain KC = 16 rather than the KC = 21 predicted from the above anlaysis. The difference 
arises because Loop Pro does not employ an approximation for dead time in its calculations.  
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−1-10 -8.99

Im

Re

−21

21

−1-10 -8.99

Im

Re

−21

21

 
 

 
     

 
 

 

16.7  Exercises 
 
Q-16.1 Showing all steps, derive the closed loop “set point to measured process variable” transfer 

function for this block diagram. 
 

 

Ysp(s) E(s) U(s)
GC(s) GP(s)

+
–

Y(s)

Controller Process

Measurement                                 
Sensor/Transmitter                

Y(s)YM(s)
GM(s)
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 Q-16.2 Draw and label the block diagram for this process. Please use the notation given. 

Fo(s)

Fd (s)Fi(s)

hsp(s)

hm(s)

Fc(s)
h(s)
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17.  Deriving PID Controller Tuning Correlations 
 

17.1  The Direct Synthesis Design Equation 
The PID tuning correlations we have used in the book and that are summarized in Appendix C can be 
derived using the theoretical foundation we have established to this point. Direct synthesis, though 
challenging to extend to the complete family of PID algorithms, is perhaps the most straightforward 
method for deriving tuning correlations. 
 The derivation is based on the simplified block diagram of Fig. 17.1: 
 

Ysp(s) E(s) U(s)

Y(s)

GC(s) GP(s)
+

–

Y(s)

Controller Process

 
 

Figure 17.1 − Simplified block diagram 
 
 
As derived in Chapter 15, the closed loop “process variable to set point” transfer function for this 
block diagram is: 

                                                       ( ) ( )( )
( ) 1 ( ) ( )

C P

sp C P

G s G sY s
Y s G s G s

=
+

                                                      (17.1) 

 
Solve Eq. 17.1 for the controller transfer function: 
 

                                                    1 ( )( )
( ) ( ) ( )C

P sp

Y sG s
G s Y s Y s

=
⎡ ⎤−⎣ ⎦

                                                  (17.2) 

 
Divide through by YSP(s) to arrive at the controller design equation: 
 

                                                

( )
( )1( ) ( )( ) 1

( )

sp
C

P

sp

Y s
Y s

G s Y sG s
Y s

=
−

                                                             (17.3) 

 
Next, we specify that in closed loop, the measured process variable will rise to meet a step change in 
set point following a FOPDT shape, or: 
 

                                                          ( )
( ) 1

Cs
CL

sp C

K eY s
Y s s

θ

τ

−

=
+

                                                  (17.4)
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Figure 17.2 illustrates this desired closed loop response shape: 
 

 
 

Figure 17.2 − Desired closed loop response of process variable to set point changes 
     
where for Eq. 17.4 and illustrated in Fig. 17.2: 
 
  

                 KCL [=] closed loop process variable to set point response gain 
 

                             Cθ   [=] closed loop dead time 
 

                             Cτ   [=] closed loop time constant 
 
• Specify KCL: We want the measured process variable always to equal the set point. Whenever there 
is a set point change, ∆ysp(t), then the process variable, ∆y(t), should respond quickly and ultimately 
change in equal magnitude. Hence, recalling that gains are computed from one steady state to the 
next, we conclude: 

                                                                 1
)(

)(
=

∆
∆

=
ty

tyK
sp

CL  

 
• Specify Cθ : Dead time is always undesirable. Whenever possible, we avoid adding more dead time 
to a loop. Yet if we are tuning a controller for a process where dead time exists, we cannot ignore it. 
Consequently, we set the closed loop dead time to the minimum value possible without adding to the 
process dead time, so: 
                                                                      ( ) ( )C Pt tθ θ=  
  
• Specify Cτ : The closed loop time constant indicates the speed of the response of a process to set 
point changes. A popular heuristic for achieving a 10% to 15% overshoot to step changes in set point 
is: 
 
                                                         Cτ  is the larger of Pτ1.0  or Pθ8.0           
 
A heuristic for a more conservative “no overshoot” response to set point changes is: 
 
                                                         Cτ  is the larger of 0.5 Pτ  or 4 Pθ           
 

YSP(t) 

Y(t) ( ) 1
( )CL

sp

y tK
y t
∆

= =
∆

Cθ
Cτ

Y(t) 

Time, t
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These rules indicate that for small values of dead time, the closed loop process should respond from 
two to ten times faster than the open loop process. To understand how this is possible, consider that 
when accelerating a car from one velocity to another, you do not move the gas pedal once and wait 
for the car to speed up and then steady out at the desired velocity (this is how the process time 
constant is computed in open loop). 
 Rather, you push the gas pedal past the level where it will ultimately end up and then ease off 
the pedal as the car approaches the desired speed. Similarly, a controller will send a controller output 
signal that is beyond its ultimate or final value and then ease off as the measured process variable 
approaches the new set point. As such, a closed loop process can indeed respond faster than its natural 
open loop response. 
 Hence, the desired closed loop response of the measured process variable to changes in set 
point expressed in Eq. 17.4 becomes: 
 

                                                               ( )
( ) 1
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sp C

Y s e
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−
=

+
                                                              (17.5) 

  
Substitute Eq. 17.5 into the controller design equation, Eq. 17.3,  yields: 
 
 

                                            11( )
( )

1
1

P

P

s

C
C s

P

C

e
sG s

G s e
s

θ

θ
τ

τ

−

−
+

=
−

+

                                                   (17.6) 

 
which gives our final controller design equation: 
 

 

                                                1( )
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P

s

C s
P C

eG s
G s s e

θ

θτ

−

−

⎛ ⎞
= ⎜ ⎟⎜ ⎟+ −⎝ ⎠

                                                 (17.7) 

 
 
 
17.2  Deriving Controller Tuning Correlations Using Direct Synthesis 
The method of approach for deriving tuning correlations using design Eq. 17.7 is summarized as: 
-  transform the process ODE from the time domain into the Laplace domain to determine GP(s), 
-  substitute resulting GP(s) into Eq. 17.7,  
-  assume a rational expression for ( )P sθ  (e.g. the Padé approximation) and substitute into Eq. 17.7, 
-  rearrange the updated Eq. 17.7 to match the form of a controller transfer function, GC(s), from the 

PID family of algorithms,  
-  compare forms and deduce the correlations for the tuning parameters. 

 
Example 1: Derive the PI Controller Tuning Correlations 
The PI controller tuning correlations are derived assuming our process is reasonably described 
with a FOPDT model:  
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Substitute the process model into Eq. 17.7,  the controller design equation: 
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Next assume a very small value of dead time and employ the simplifying approximation: 
 

                                                      se P
sP θθ −≅− 1  

 
The controller design equation becomes: 
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Factoring gives: 
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Recall the general PI controller transfer function: 
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Comparing these equations reveals that we have derived PI controller tuning correlations if we 
specify: 
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P
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K
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τ
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Example 2: Derive the Interacting PID with Filter Controller Tuning Correlations 
The Interacting PID with Filter controller tuning correlations can be derived assuming our 
process can be described with an FOPDT model:  
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Substituting the process model into the controller design equation gives: 
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Assume a small value of dead time and use the Padé 1-1 approximation: 
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Factoring gives: 
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Recall the general Interacting PID with Filter controller transfer function: 
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Comparing these equations reveals that we have derived Interacting PID with Filter controller 
tuning correlations if we specify: 
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17.3  Internal Model Control (IMC) Structure 
Internal Model Control (IMC), like direct synthesis, can be used to derive PID controller tuning 
correlations.  Figure 17.3 shows a simplified block diagram of the IMC structure. The unique aspect 
of IMC construction is the placement of a process model, GP

*(s), in parallel with the actual process it 
represents. 
 
 

 
 

Figure 17.3 – IMC Structure 
 
 As shown in the diagram, process model GP

*(s) receives the actual controller output signal, 
U(s), and uses it to compute Y*(s), a prediction of the measured process variable, Y(s). While in 
theory, the parallel process model must be derived and programmed as part of the controller, we show 
in the following sections that with certain assumptions, the structure of Fig. 17.3 can be recast into a 
traditional feedback control architecture. Thus, for the specific cases of interest here, this model is 
never actually created as a separate entity. 
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17.4  IMC Closed Loop Transfer Functions 
As with direct synthesis, the controller tuning correlations are based on the closed-loop transfer 
functions. To derive the closed-loop transfer functions, we perform balances on the IMC structure 
shown in Fig. 17.3 by writing: 
 
 
 

 ( ) ( ) ( ) ( ) ( )P DY s U s G s D s G s= +                          (17.8) 
 

 * *( ) ( ) ( )PY s U s G s=                           (17.9) 
  

 * * *( ) ( ) ( ) ( ) ( ) ( ) ( )C sp CU s E s G s Y s Y s Y s G s⎡ ⎤= = − +⎣ ⎦                      (17.10) 
 
 
 
Substituting Eqs. 17.8 and 17.9 into Eq. 17.10 yields: 
 

                       * *( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )sp P D P CU s Y s U s G s D s G s U s G s G s⎡ ⎤= − − +⎣ ⎦   
                  

                       * * * * *        ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )sp C P C D C P CY s G s U s G s G s D s G s G s U s G s G s= − − +  
 
 
We solve for U(s): 

                        
* *

* * * *
( ) ( ) ( )( ) ( ) ( )

1 ( ) ( ) ( ) 1 ( ) ( ) ( )
C D C

sp
C P P C P P

G s G s G sU s Y s D s
G s G s G s G s G s G s

= −
⎡ ⎤ ⎡ ⎤+ − + −⎣ ⎦ ⎣ ⎦

        (17.11) 

 
 
Substitute Eq. 17.11 into Eq. 17.8 to obtain: 
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* * * *
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G s G s G s G s G sY s Y s D s D s G s
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= − +
⎡ ⎤ ⎡ ⎤+ − + −⎣ ⎦ ⎣ ⎦

 

 
 
And rearrange into the closed loop transfer function: 
 
 

 
* **

* * * *

( ) 1 ( ) ( )( ) ( )
( ) ( ) ( )

1 ( ) ( ) ( ) 1 ( ) ( ) ( )

D C PC P
sp

C P P C P P

G s G s G sG s G s
Y s Y s D s

G s G s G s G s G s G s

⎡ ⎤−⎣ ⎦= +
⎡ ⎤ ⎡ ⎤+ − + −⎣ ⎦ ⎣ ⎦

            (17.12) 

 
 
Equation 17.12 yields a set-point tracking (servo response) transfer function assuming a constant 
disturbance, and disturbance rejection (regulator response) transfer function assuming a constant set 
point: 
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       Set-Point Tracking: 
*

* *
( ) ( )( )

( ) 1 ( ) ( ) ( )
C P

sp C P P

G s G sY s
Y s G s G s G s

=
⎡ ⎤+ −⎣ ⎦

          (17.13) 

  

       Disturbance Rejection: 
* *

* *

( ) 1 ( ) ( )( )
( ) 1 ( ) ( ) ( )

D C P

C P P

G s G s G sY s
D s G s G s G s

⎡ ⎤−⎣ ⎦=
⎡ ⎤+ −⎣ ⎦

          (17.14) 

 

17.5  Deriving Controller Tuning Correlations Using the IMC Method 
Three basic steps are used to derive IMC tuning correlations; the first two steps detail the creation of 
the IMC model. The last step relates the IMC model to a classical feedback controller transfer 
function to obtain controller tuning correlations. 
 
Step 1: Recall the discussion from Chapter 15 where we established that the poles of  a transfer 
function (the roots of the characteristic equation in the denominator of the transfer function) indicate 
system stability. If the real part of any root is positive (lies in the right hand side of the complex 
plane), the system is unstable. 
 This concept plays a central role in the IMC analysis. The approach we take is to invert the 
process model to create the controller. One problem with such an approach is that any roots in the 
numerator (analogous to poles, roots in the numerator of a transfer function are called zeros) of the 
process model that lie in the right hand of the complex plane, when inverted, become unstable poles. 
If we permit this to occur, our controller will be unstable. 
 To avoid creating an unstable controller, factor the process model, * ( )PG s , into an invertible 
and noninvertible part. The classification is based on the numerator of the transfer function because 
this becomes the denominator when the model is inverted in Step 2.  
 The noninvertible part, * ( )PG s+ , contains all right-hand plane zeros (roots in the numerator of 

a transfer function that have positive real parts) and the dead time term. The invertible part, * ( )PG s− , 
contains left hand plane zeros (roots in the numerator that have negative real parts) that produce 
stable behavior when in the denominator of a transfer function. Using this notation, the process model 
is factored as: 
 * * *( ) ( ) ( )P P PG s G s G s+ −=            (17.15) 
 
 
Step 2:  Specify the controller transfer function as: 
 

 *
*
1( ) ( )

( )C
P

G s F s
G s−

=            (17.16) 

 
where F(s) is a low-pass filter with gain equal to 1. The term “low-pass” is used to indicate that high 
frequencies (rapid controller output changes) are lost. For deriving tuning correlations, the IMC filter 
has the form: 

 
( )

1( )
1C

F s
sτ

=
+

            (17.17) 

 
As discussed in section 17.1, the closed loop time constant, Cτ , indicates the speed of the response of 
a process to set point changes. A popular heuristic for achieving a 10% to 15% overshoot to step 
changes in set point is: 
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                                                         Cτ  is the larger of Pτ1.0  or Pθ8.0           
 
A heuristic for a more conservative “no overshoot” response to set point changes is: 
 
                                                         Cτ  is the larger of 0.5 Pτ  or 4 Pθ           
 
 
Step 3:  Relate the IMC transfer function models to those from classical feedback control.  We recall 
that the closed loop transfer function for a classical feedback control architecture is: 
 

                                        
( ) ( ) ( )( ) ( ) ( )

1 ( ) ( ) 1 ( ) ( )
P C D

sp
P C P C

G s G s G sY s Y s D s
G s G s G s G s
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We compare set point tracking forms: 
 

       IMC:      
*
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G s G sY s
Y s G s G s G s

=
⎡ ⎤+ −⎣ ⎦

          Classical:      ( ) ( )( )
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sp P C

G s G sY s
Y s G s G s
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And equate the two:  
    
                      [ ] ( )* * *( ) ( ) 1 ( ) ( ) ( ) ( ) 1 ( ) ( ) ( )P C P C P C P P CG s G s G s G s G s G s G s G s G s⎡ ⎤+ = + −⎣ ⎦  
 

                     * * * * *( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )C C P C C C P C C P CG s G s G s G s G s G s G s G s G s G s G s+ = + +  
 
 

Rearranging, we obtain 
*

* *
( )( )

1 ( ) ( )
C

C
C P

G sG s
G s G s

=
−

            (17.18) 

 
 
We can use Eq. 17.18 to obtain a classical feedback controller from one derived from the IMC 
structure. This enables us to determine the controller tuning parameters KP , τI ,  τD , and α. 
 

Example: Derive the PI Controller Tuning Correlations using the IMC Method 
Assume a FOPDT process model: 
 

 * ( )
1

Ps
P

P
P

K eG s
s

θ

τ

−
=

+
 

 

Substitute the first-order expansion for Pse θ− : 
 
 

 1Ps
Pe sθ θ− ≈ −  

 

so  * (1 )( )
1

P P
P
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K sG s
s

θ
τ

−
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+
                                                          (17.19) 
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Factor * ( )PG s  into invertible and noninvertible parts: 
 

 * * *( ) ( ) ( )P P PG s G s G s+ −=  
 
so following the discussion above: 
 

 * ( ) (1 )P PG s sθ+ = −  
 
 

 * ( )
1

P
P

P

KG s
sτ− =

+
                                                                (17.20) 

 

We can now express the IMC controller model, * ( )CG s , in terms of the invertible process model 
term and a first-order filter term, F(s): 
 
 

 *
*
1( ) ( )

( )C
P

G s F s
G s−

=                                                          (17.21) 

 

where the IMC filter has the form: 
 

 1( )
1C

F s
sτ

=
+

                                                                    (17.22) 

 

Substituting Eqs. 17.20 and 17.22 into Eq. 17.21 yields the controller: 
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* 1 11( )
1 1

P P
C

P C P C

s sG s
K s K s

τ τ
τ τ
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                      (17.23) 

 

We can relate this IMC controller model, * ( )CG s , to a classical feedback controller model via Eq. 
17.18:: 
 

 
*

* *
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1 ( ) ( )
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G sG s
G s G s
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We substitute Eq. 17.19 and 17.23 into Eq. 17.18 and simplify: 
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Compare Eq. 17.24 to the classical feedback model for a PI controller, 
 

 PI
1( ) 1C C
I

G s K
sτ

⎡ ⎤
= +⎢ ⎥
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we obtain the following controller tuning parameters: 
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K
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Additional tuning correlation derivations for several controllers from the PID family can be found in 
Appendix A. 

 
 

17.6  Exercises 
 
Q-17.1 Showing all steps, use the Direct Synthesis method to derive controller tuning correlations for 

the PID control algorithm 
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 Assume the process is best described by a second order plus dead time model of the form 
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 and that the process has very little dead time, or se P

sP θθ −≅− 1 . 
  
 Hint: the resulting correlations will not match those in the Controller Tuning Guide. 
 
Q-17.2 Showing all steps, use the Direct Synthesis method to derive PI controller tuning 
 correlations, assuming the dynamic behavior of a process is described by a first-order 
 without dead time transfer function. 
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Combining Theory and Practice 

18.  Cascade Control 
 
18.1  Architectures for Improved Disturbance Rejection 
The most popular architectures for improved regulatory performance are cascade control and the feed 
forward with feedback trim architecture discussed in the next chapter. Both architectures trade off 
additional complexity in the form of instrumentation and engineering time in return for a controller 
better able to reject the impact of disturbances on the measured process variable. Neither architecture 
benefits nor detracts from set point tracking performance. 
 As we will soon learn, the feed forward with feedback trim architecture requires an additional 
sensor and the programming of a dynamic model. The sensor is installed to directly measure changes 
in the disturbance variable. The model receives the disturbance measurement, computes control 
actions to counter or negate its impending impact on the measured process variable, and transmits the 
result to the controller for execution. Because of this architecture, feed forward is useful when one 
specific disturbance variable is responsible for repeated, costly disruptions to stable operation. It is 
also useful when a secondary measured process variable cannot be identified to construct a control 
cascade as discussed in the next section. 
 
18.2  The Cascade Architecture 
A feed forward element seems reasonably straightforward in concept; directly measure a nasty 
disturbance and use a model to instruct the controller how and when to take actions to negate its 
impact on the measured process variable. Developing and programming a proper dynamic model, 
however, can be a challenging task that should not be underestimated. 
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Figure 18.1 − Block diagram of the cascade architecture 
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 Cascade control is more difficult to conceptualize, yet implementation is a familiar task 
because the architecture is comprised of two ordinary controllers from the PID family. Like feed 
forward, cascade provides minimal benefits for set point tracking. Before you begin your design, be 
sure your goal is improved disturbance rejection. 
 In a traditional feedback loop, a controller adjusts a manipulated variable so the measured 
process variable remains at set point. The cascade design requires that you identify a secondary 
process variable (we will henceforth call the main process variable associated with original control 
objective the primary variable). This secondary process variable has specific requirements: 
 

• it must be measurable with a sensor, 
• the same final control element (e.g. valve) used to manipulate the primary variable must also 

manipulate the secondary variable, 
• the same disturbances that are of concern for the primary variable must also disrupt the 

secondary variable, and  
• the secondary variable must be inside the primary process variable, which means it responds 

well before the primary variable to disturbances and final control element manipulations. 
 

 With a secondary process variable identified, a cascade is constructed as shown in Fig. 18.1. 
The block diagram shows how both Disturbance I and the final control element impact the secondary 
variable before they affect the primary variable. Notice that the secondary loop has a traditional 
feedback control structure, except here it is literally nested inside the primary loop.  
 A cascade requires two sensors and two controllers but only one final control element 
because the output of the primary controller, rather than going to a valve, becomes the set point of the 
secondary controller. Because of the nested architecture, success in a cascade implementation 
requires that the settling time of the (inner) secondary loop is significantly faster than the settling 
time of the primary (outer) loop. 
 As the above discussion implies, one advantage of a control cascade is that it is not tied to a 
single disturbance. Rather, the same cascade can address multiple disturbances as long as each 
impacts the inner secondary variable well before it impacts the outer primary variable. Also, as 
mentioned before, implementation uses our existing skills because the architecture is comprised of 
two ordinary controllers from the PID family. 
 
18.3  An Illustrative Example 
 
The Flash Drum Process 
To better understand the construction and use of cascade control, consider the flash drum process 
shown in Fig. 18.2. This process is not a case study in Loop Pro, but its behavior is reasonably 
intuitive, and this makes it useful for a qualitative discussion of the important concepts.  
 As shown in the figure, the feed stream entering the flash valve is a hot liquid under high 
pressure. A flash valve produces a large and sudden drop in pressure as the liquid flows toward the 
flash drum, permitting some of the hot liquid to vaporize. As a result, a vapor phase forms over the 
liquid inside the drum. Figure 18.2 shows that a vapor stream exits overhead from the drum while a 
liquid stream exits from the bottom. It is essential that the liquid level never falls so low that vapor is 
sent down the liquid drain nor rises so high that liquid enters the vapor line.  
 Given this scenario, our design objective is to control liquid level in the drum. Liquid drain 
flow rate is selected as the manipulated variable in this example. If liquid level is too high, the 
controller should increase liquid drain flow rate. If level is too low, the controller should decrease 
liquid drain flow rate.  
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 The disturbance of concern in this example is the pressure in the vapor phase. As indicated in 
the figure, the overhead vapor phase pressure changes without warning due to the behavior of some 
unidentified down stream unit. 

flash
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LC Lsetpoint

pressure set
down stream

(a disturbance)

 P

vapor

liquid

valve position manipulated 
to control liquid level

hot liquid feed

liquid
drain

overhead vapor

 
 

Figure 18.2 − Single-loop level control of a flash drum  
 
Problems with Single Loop Control 
The controller of Fig. 18.2 attempts to achieve the design objective by adjusting valve position in the 
liquid drain stream. If the measured level is higher than set point, the controller signals the valve to 
open by an appropriate percentage with the expectation that this will increase drain flow rate 
accordingly. But drain flow rate is a function of several variables, including 
 

  - valve position, 
  - the hydrostatic head (height of the liquid), and 
  - the pressure of the vapor pushing down on the liquid (a disturbance). 
 

Assume for a moment that the pressure of the vapor phase is constant over time (and the feed flow 
rate and composition are also constant) then as the drain valve opens and closes, the liquid drain flow 
rate increases and decreases in a predictable fashion. Hence, the single loop architecture of Fig. 11.2 
should provide satisfactory liquid level control performance. 
 However, as Fig. 18.2 indicates, the pressure of the vapor phase is controlled by a unit down 
stream of our flash drum. Rather than remaining constant, the pressure of the vapor phase changes 
over time and this acts as a disturbance to the level control process. 
 Suppose the vapor phase pressure starts decreasing. This disturbance will cause the pressure 
pushing down on the liquid interface to decrease. If the valve position remains constant, the liquid 
drain flow rate will similarly decrease. If the pressure decrease occurs quickly enough, the controller 
can actually be opening the valve yet the liquid drain flow rate can continue to decrease. 
Alternatively, if the pressure in the vapor phase starts to increase, the controller can be closing the 
valve yet the liquid drain flow rate can actually increase.  
 The pressure change disturbance causes a contradictory outcome that can confound the 
controller and result in poor control. As the preceding discussion indicates, it is not valve position but 
liquid drain flow rate which must be adjusted for high performance disturbance rejection.  
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A Cascade Control Solution 
A first step in cascade design is to ensure that our control objective is disturbance rejection. The 
scenario presented supports that the controller is not intended for set point tracking. In fact, the set 
point will be constant at mid-drum level during normal operation. Our goal is to maintain liquid level 
at set point while rejecting the disturbance of pressure changes in the overhead vapor phase.  
 To implement a cascade we must be able to identify a secondary process variable. Liquid 
level becomes the primary process variable and controlling it remains the central design objective of 
our strategy. For the secondary process variable we propose liquid drain flow rate. As required by the 
cascade design criteria: 
    

• liquid drain flow rate is measurable with a sensor, 
• the same valve used to manipulate liquid level (the primary variable) also manipulates the 

liquid drain flow rate, 
• changes in vapor phase pressure that disturb liquid level control also impact the drain flow 

rate, and  
• drain flow rate is inside the liquid level in that it responds well before liquid level to changes 

in valve position and changes in vapor phase pressure. 
 
 Figure 18.3 shows a cascade architecture with two controllers (level control and drain flow 
rate control), two measurement sensors (measuring liquid level and liquid drain flow rate) and one 
final control element (a valve in the liquid drain stream). Figure 11.4 shows a block diagram of this 
same level-to-flow cascade. 
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Figure 18.3  − Level-to-flow cascade control of liquid level  
 
 Liquid level control, our main objective, is the primary or outer loop. The output of the 
primary controller is the set point of the secondary controller, which controls liquid drain flow rate by 
adjusting the valve position. Flow control dynamics are much faster than level control dynamics. 
Hence, this configuration is consistent with the previously mentioned design criteria that the settling 
time of the secondary loop must be significantly faster than the settling time of the primary loop. 
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Figure 18.4  − Block diagram of the level-to-flow cascade architecture 
 
 With this cascade architecture, if the liquid level is too high, the level controller now 
specifically calls for an increased liquid drain flow rate rather than simply an increase in valve 
opening as was the case in the single loop configuration of Fig. 18.2. It is the flow controller that then 
determines whether this means opening or closing the valve and by how much. Thus, a pressure 
disturbance in the vapor phase gets addressed quickly by the secondary flow controller and this 
dramatically improves the disturbance rejection performance of primary control loop. 
 
18.4  Tuning a Cascade Implementation 
Cascade loop tuning uses the skills we have developed in previous chapters: 
 

1) Begin with both the primary and secondary controllers in manual mode.  
2) Select a P-Only controller for the inner secondary loop (integral action increases settling 

time and offset is rarely an issue for the secondary process variable). 
3) Tune the secondary P-Only controller using a set point tracking criterion (its main job is to 

respond to set point commands from the primary controller). Test it to ensure a satisfactory 
set point tracking performance. 

4) Leave the secondary controller in automatic; it now literally becomes part of the primary 
process. Select a controller with integrating action for the primary loop (PI or PID). Use a 
disturbance rejection design criterion as this is the main job of the primary controller. 

5) Tune the primary controller using methods discussed in the previous chapters and test it to 
ensure acceptable performance. 

6) With both controllers in automatic, tuning of the cascade is complete. 
 

18.5  Exploring the Jacketed Reactor Process 
As described in Section 2.6 and shown in Fig. 18.5 for the single feedback loop case, the jacketed 
reactor is a continuously stirred vessel in which an exothermic (heat producing) reaction occurs. 
Residence time is constant in this well mixed reactor, so the conversion of reactant feed to desired 
product can be inferred from the temperature of the reactor exit stream.  



 

185 
 

Practical Process Control® by Douglas J. Cooper 
Copyright © 2005 by Control Station, Inc. 

All Rights Reserved 

 To control reactor exit stream temperature (the measured process variable), the vessel is 
enclosed with a jacket through which a cooling liquid flows. The controller manipulates a valve to 
adjust the cooling liquid flow rate. If the exit stream temperature (and thus conversion) is too high, 
the controller opens the valve. This increases cooling liquid flow rate, which cools off the reactor and 
causes the heat producing reaction to slow. Ultimately, the measured temperature of the stream 
exiting the reactor drops in response to the control action. As shown in Fig. 18.5, the disturbance 
variable of interest for this process is the temperature of cooling liquid entering the jacket. 
 

 
Figure 18.5 − Jacketed reactor process with single loop feedback control architecture 

 
 
 In the study explored here, the control objective is to maintain the reactor exit stream 
temperature at set point by rejecting disturbances caused by changes in the cooling jacket inlet 
temperature. The disturbance rejection performance of a single loop PI controller configuration is first 
presented and then compared to that of a PI to P-Only controller cascade architecture.  
 For both the single loop and cascade investigation, the design level of operation is a reactor 
exit stream temperature (measured process variable) of 86°C. The cooling jacket inlet temperature 
(disturbance) is normally at its design value of 46°C, but our concern is that on occasion, it is known 
to unexpectedly spike as low as 40°C. An open loop study establishes that a controller output of 50% 
causes the reactor to steady at the design measured exit stream temperature of 86°C when the cooling 
jacket inlet temperature is at its expected or design value of 46°C. 
 
18.6  Single Loop Disturbance Rejection in the Jacketed Reactor 
Tuning the single loop PI controller shown in Fig. 18.5 follows the same design procedure we have 
always used in this book. We perturb the controller output, record the data as the process responds, fit 
a FOPDT (first order plus dead time) model to the data, and use the resulting model parameters in a 
tuning correlation to determine initial controller tuning values.  
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 As shown in Fig. 18.6, we use a controller output doublet to generate measured process 
variable data both above and below the design level of operation. Although a variety of dynamic tests 
would produce an equally useful data set, here the controller output is stepped from the design value 
of 50% up to 53%, then down to 47%, and finally back to 50%. The measured reactor exit stream 
temperature exhibits a clear response after each controller output step that dominates any 
measurement noise. 
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Figure 18.6 − FOPDT model fit of single loop controller output to measured process variable data 
 
A FOPDT fit of the dynamic process data as computed by Design Tools is also shown in Fig. 18.6. 
The model appears to be reasonable and appropriate based on visual inspection, thus providing the 
following design parameters: 
 

          Process Gain, KP = − 0.36°C/% 
 

    Time Constant, τP = 1.6 min   
 

      Dead Time, θP = 0.88 min 
 

To use the IMC correlations, we first compute the closed loop time constant. Here we choose 
aggressive tuning:  
 

                 τC = larger of 0.1τP or 0.8θP = larger of 0.1(1.6) or 0.8(0.88) = 0.70 min.  
 

Substituting this closed loop time constant and the above FOPDT model parameters into the IMC 
tuning correlations of Eq. 8.5 yield the following tuning values: 
 
    Controller Gain, KC =  − 2.8 %/°C 
    Reset Time, τI  = 1.6 min 
 
 The disturbance rejection performance of the single loop PI controller using these tuning 
parameters is shown in Fig. 18.7. The controller label to the upper right of the plot confirms that the 
PI controller has a direct acting proportional term, an anti-reset windup integral term, and a derivative 
term that is off.  
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 As shown in Fig. 18.7, the measured reactor exit stream temperature is initially steady at the 
design set point value of 86°C. To test the controller, the cooling jacket inlet temperature is stepped 
from its design value of 46°C down to 40°C and back again. As shown, the single loop PI controller 
is able to maintain reactor exit stream temperature near the constant set point of 86°C, with deviations 
ranging as high as 2.5°C during the event. 
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Figure 18.7 − Disturbance rejection in the jacketed reactor under single loop PI  control 
              show process variable deviations reach 2.5°C (compare to Fig. 18.13)  

 
 
18.7  Cascade Disturbance Rejection in the Jacketed Reactor 
The open loop dynamic behavior of the cascade jacketed reactor is identical to that of the single loop 
case. The process graphic for the cascade controller architecture is shown in Fig. 18.8.  
 
The Cascade Architecture 
As discussed in the single loop study, our control objective is disturbance rejection, so it is 
appropriate to consider a cascade architecture. The primary process variable remains the reactor exit 
stream temperature. To construct a cascade, we need to identify a secondary process variable. As 
shown in Fig. 18.8, Loop Pro uses the cooling jacket outlet temperature. As required for a cascade 
design: 
   

• cooling jacket outlet temperature is measurable with a sensor, 
• the same valve used to manipulate reactor exit stream temperature (the primary variable) also 

manipulates the cooling jacket outlet temperature,  
• changes in cooling jacket inlet temperature that disturb the reactor exit stream temperature 

also impact the cooling jacket outlet temperature, and  
• the cooling jacket outlet temperature is inside the reactor exit temperature in that it responds  

first to changes in valve position and changes in the cooling jacket inlet temperature. 
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A block diagram of this architecture is shown in Fig. 18.9. Like all cascades, there are two 
measurements, two controllers and one final control element; the same final control element as in the 
single loop case.  
 

 
 

Figure 18.8 − Jacketed reactor process with cascade control architecture 
 
 The primary (outer) process is still the reactor and the primary measured process variable is 
the reactor exit stream temperature. The output of the primary controller is the set point of the 
secondary controller. The inner (secondary) process is the cooling jacket. The manipulated variable of 
the secondary loop is the cooling jacket liquid flow rate and the secondary measured process variable 
is the cooling jacket outlet temperature.  
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Figure 18.9 − Block diagram of jacketed reactor cascade architecture 
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Secondary P-Only Controller 
To implement a cascade, the secondary controller is tuned while the primary controller is in manual 
mode. The design operating conditions are the same as those used for the single loop PI controller 
study. That is, with the cooling jacket inlet temperature at 46°C and the controller output at 50%, the 
reactor exit stream temperature steadies at the design value of 86°C. We note at these design 
conditions that the cooling jacket outlet temperature, the secondary measured process variable, 
steadies at 69°C. Hence, for the secondary controller: 
  

     ysetpoint = 69°C 
 
 The bias is the value of the controller output that, in open loop, causes the measured process 
variable to steady at its design condition when the disturbances are at their design or expected value. 
So for the secondary P-Only controller: 
     ubias = 50% 
 
 Starting from steady state at the design level of operation, a doublet is used to generate 
controller output to secondary process variable dynamic data as shown in Fig. 18.10. The controller 
output is stepped from the design value of 50% up to 55%, down to 45%, and back to 50%. After 
each control action, the secondary process variable displays a clear response that dominates 
measurement noise. 
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Figure 18.10 − FOPDT  fit of controller output to secondary process variable dynamic data 
 

A FOPDT dynamic model fit to the data, also shown in Fig. 11.10, yields the following secondary 
control loop model parameters.  
    Process Gain, KP = − 0.37°C/% 
 

    Time Constant, τP = 1.9 min   
 

      Dead Time, θP = 0.25 min 
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 Although disturbance rejection is the overall objective, the goal of the inner secondary loop is 
to track set point changes computed by the primary controller. Using these FOPDT model parameters 
in the ITAE for set point tracking correlation (recall that IMC correlations do not exist for P-Only 
controllers) yields the following P-Only tuning parameter: 
 
            Controller Gain, KC  =  − 6.4 %/°C 
 
 P-Only set point tracking performance is shown in Fig. 18.11. The primary loop is still in 
manual mode at this point. As expected for a P-Only controller, offset exists when the set point is not 
at the design value. The secondary process variable responds quickly and settles rapidly to set point 
changes so we consider the design of the secondary loop to be complete. The secondary loop is left in 
automatic and literally becomes part of the primary process. We now tune the primary controller. 
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Figure 18.11 − Set point tracking performance of the secondary loop under P-Only control 
 
Primary Loop Control 
In previous chapters, we have always generated dynamic process data for controller design by 
stepping, pulsing or otherwise perturbing the controller output signal. In the cascade architecture, 
however, the controller output of the primary loop is the set point of the secondary controller. So to 
design the primary controller, we must step, pulse or otherwise perturb the secondary set point and 
then fit a model to the corresponding response in the primary measured process variable. Figure 18.11 
contains such data and this is used for the design of the primary PI controller.  
 The set point of the secondary P-Only controller, as shown in Fig. 18.12, is stepped in a 
doublet from its design value of 69°C up to 72°C, down to 66°C, and back to 69°C. The measured 
reactor exit stream temperature displays a clear response after each change that dominates the 
measurement noise. A FOPDT fit of the dynamic data, shown in Fig. 18.12, yields the following 
primary control loop model parameters.  
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   Process Gain, KP = 0.70 
streamoutlet jacket  cooling of  C

streamexit reactor  of  C
°

°  

   Time Constant, τP = 0.55 min   
 

     Dead Time, θP = 0.71 min 
 
We first compute the closed loop time constant. Here we choose aggressive tuning:  
 
          τC = larger of 0.1τP or 0.8θP = larger of 0.1(0.55) or 0.8(0.71) = 0.57 min.  
 
 

Substituting this closed loop time constant and the above FOPDT model parameters into the IMC 
correlations for PI control yields the following tuning values: 
 

   Controller Gain, KC = 0.61 
streamexit reactor of C

streamoutlet jacket  cooling of  C
°

°  

   Reset Time, τI = 0.55 min 
 
These tuning values are implemented on the primary loop and the design of the cascade is complete. 
 

82

84

86

88

66

68

70

72

0 5 10 15 20 25 30

Model: First Order Plus Dead Time (FOPDT) File Name: secondary.txt
Sec: Manual Mode

SSE: 13.78
Gain (K) = 0.7049, Time Constant (T1) = 0.5497, Dead Time (TD) = 0.7135

P
rim

ar
y 

P
V

S
ec

on
da

ry
 S

et
P

oi
nt

Time

primary process data 
and FOPDT model fit

FOPDT Model Fit for Design of Primary Controller

secondary P-Only 
set point steps

 
 

Figure 18.12 − FOPDT model fit of  dynamic data from a primary loop doublet test 
 
 
 Figure 18.13 shows the disturbance rejection performance of the cascade using these tuning 
parameters for the primary PI controller while the secondary loop remains under P-Only control as 
previously described. Just as in Fig. 18.7, the primary measured process variable (reactor exit stream 
temperature) is initialized at the design set point value of 86°C. To test the controller, the cooling 
jacket inlet temperature is again stepped from its design value of 46°C down to 40°C and back again.  
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  One interesting outcome of this cascade implementation is the offset that occurs in the 
secondary P-Only loop when the process moves away form the design level of operation. Of more 
importance, however, is that the cascade shows improved performance over the single loop case in 
maintaining the reactor product temperature near the constant set point of 86°C. 
 Specifically, while the measured reactor exit temperature deviations for the single loop PI 
controller range as high 2.5°C during the event, here the cascade limits the maximum deviation to 
about 1.0°C. This improved performance did not come free, however, as the cascade architecture 
requires an additional sensor, controller and tuning effort.  
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Figure 18.13 −  Disturbance rejection in the jacketed reactor with a P-Only to PI cascade 

                                   Process variable deviations reach 1.0°C (compare to Fig. 11.7) 
 
 

18.8  Set Point Tracking Comparison of Single Loop and Cascade Control 
The cascade architecture does not provide benefit in tracking set point changes and this is illustrated 
in Fig. 18.14 for the jacketed reactor. The plot on the left shows the set point tracking performance of 
the single loop PI controller while the plot on the right shows that for the cascade. The lower trace on 
each plot is the controller output signal sent to the valve located on the jacket cooling outlet stream. 
 The performance of the single loop controller on the left may reasonably be considered 
superior to that of the cascade on the right. Do not forget, however, that the single loop PI controller 
was tuned using the IMC for set point tracking and disturbance rejection correlation. The primary 
loop of the cascade was tuned using the ITAE for disturbance rejection correlation, which generally 
provides more aggressive tuning values. 
 This single example is not sufficient to support a claim that one architecture performs better 
than the other for set point tracking. We close this chapter, however, by restating once again that 
before considering a cascade architecture, be sure the controller design objective is the rejection of 
disturbances. 



 

193 
 

Practical Process Control® by Douglas J. Cooper 
Copyright © 2005 by Control Station, Inc. 

All Rights Reserved 

85
86
87
88
89
90
91

30
35
40
45
50
55
60

20 25 30 35 40 45 50 55

Process: Single Loop Jacketed Reactor Controller: PID ( P= DA, I= ARW, D= off ) 

Tuning:  Gain = -2.70, Reset Time = 1.60, Deriv Time = 0.0, Sample Time = 1.00

P
V

/S
et

po
in

t
C

on
tro

lle
r O

ut
pu

t

Time (mins)

85
86
87
88
89
90
91

30

40

50

60

100 105 110 115 120 125 130 135

Process: Cascade Jacketed ReactorPri: PID ( P= RA, I= ARW, D= off )  / Sec: PID ( P= DA, I= off, 

Tuning:  Gain = 1.00, Reset Time = 0.95, Deriv Time = 0.0, Sample Time = 1.00

Pr
im

ar
y 

PV
Se

co
nd

ar
y 

CO

Time (mins)

Process: Cascade Jacketed Reactor           Pri: PID  ( P= RA, I= ARW, D= off) / Sec: PID ( P= DA, I= off, D= off)

set point tracking
performance

Set Point Tracking Performance Under PI Control Set Point Tracking Performance Under Cascade Control

set point tracking
performance

Tuning:  Bias = 50.0, Gain = -5.80, Sample Time = 1.00  
 

Figure 18.14 − Comparing set point tracking of single feedback loop to that of the cascade 
 
 

18.9  Exercises 
 
Q-18.1 Repeat the cascade design study presented in this chapter, only for comparison, 
 

  a) use a PID algorithm for the outer primary loop 
  b) use a PI algorithm for the inner secondary loop   
 

 Comment on how these changes impact controller performance. Include plots that support 
your conclusions. 
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19.  Feed Forward Control 
 
19.1  Another Architecture for Improved Disturbance Rejection 
As discussed in the previous chapter, the most popular architectures for improved regulatory 
performance are cascade control and the feed forward with feedback trim architecture discussed here. 
Like cascade, a feed forward implementation requires additional instrumentation and engineering 
time and neither benefits nor detracts from set point tracking performance. 
 Before considering feed forward for your application, be sure your control objective is 
disturbance rejection. Choose feed forward over cascade if one specific disturbance variable is 
responsible for repeated, costly disruptions to stable operation, or if an appropriate secondary 
measured process variable as required for a cascade implementation cannot be identified. 
 
19.2  The Feed Forward Architecture 
The process block diagram used in the cascade discussion is shown in Fig. 19.1 with the secondary 
cascade control loop removed. As we have learned, a cascade architecture can improve the rejection 
performance of Disturbance I but not Disturbance II because there is no secondary process variable 
associated with that disturbance. As indicated in this figure, feed forward with feedback trim holds 
potential for improved disturbance rejection for both classes of disturbance. 
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Figure 19.1 -  Feed forward controllers do not require a secondary process variable 
 
 When a traditional feedback controller works to reject a disturbance, corrective action begins 
only after the measured process variable has been forced away from set point. Damage to stable 
operation is in progress before a traditional feedback controller even begins to respond.  
 Consider that many disturbances originate in some other part of the plant. A measurable 
series of events occur that cause that “distant” event to ultimately impact your process. From this 
view, the traditional feedback controller simply starts too late to be effective in reducing or negating 
the impact of a disturbance. 
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 A feed forward controller gains advantage by using a sensor to directly measure the 
disturbance before it reaches the process. As shown in Fig. 19.2, a feed forward element receives the 
disturbance measurement signal and uses it to compute and schedule preemptive control actions that 
will counter the impact of the disturbance just as it reaches the measured process variable.  
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Figure 19.2 - Architecture of a feed forward controller with feedback trim 
 
A feed forward implementation requires the purchase and installation of a sensor and the construction 
of a feed forward model element. This element is comprised of a disturbance model and a process 
model. Both models are linear in form. The computation performed by the feed forward element may 
be thought of as a two step procedure: 
 

 • The disturbance model receives disturbance measurement, d(t), and predicts an “impact 
profile,” or when and by how much the measured process variable, y(t), will be impacted. 

 
 • Given this predicted sequence of disruption to y(t), the process model then back calculates a 

series of control actions, ufeedforward(t), that will exactly counteract the disturbance as it arrives 
so the measured process variable remains constant at set point. 

 
Implementation requires that these linear models be programmed into the control computer. As we 
have learned, linear models never exactly describe real process behavior. So although a feed forward 
element can dramatically reduce the impact of a disturbance, it never will succeed in providing 
perfect disturbance rejection.  
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 To account for model inaccuracies, the feed forward signal is combined with traditional 
feedback control action, ufeedback(t), to create a total controller output, utotal(t). The feedback controller 
provides trim. That is, it rejects those portion of the measured disturbance that make it past the feed 
forward element and reach the measured process variable. The feedback controller also works to 
reject all other unmeasured disturbances affecting plant operation and provides set point tracking 
capabilities as needed. 
 Notice in Fig. 19.2 that the computed feed forward control action, ufeedforward, is assigned a 
negative sign. It is subtracted from the feedback output signal to create a total controller output: 
 

                 utotal(t)  = ufeedback(t) − ufeedforward(t)                                    (19.1) 
 

This makes sense because if the disturbance model predicts that a particular disturbance will cause the 
measured process variable to, say, move up by a certain amount over a period of time, the process 
model must compute feed forward control actions that cause the measured process variable to move 
down in the same fashion. The negative sign enables “action opposite to prediction” to be taken.  
 
19.3  An Illustrative Example 
 
Flash Drum Process Revisited 
To better understand the construction and use of feed forward with feedback trim, we revisit the flash 
drum process, shown again in Fig. 19.3. We used this example of a disturbance rejection objective in 
Section 18.3. Since feed forward is an alternative strategy for improved disturbance rejection, we use 
the same process here so we can compare the two techniques.  
 As shown in Fig. 19.3, a hot liquid under high pressure flashes as it enters the drum 
(experiences a large and sudden pressure drop). The result is a vapor and liquid phase. The design 
objective is to control liquid level in the drum. If level is too high, the controller should increase 
liquid drain flow rate. If level is too low, the controller should decrease liquid drain flow rate. The 
disturbance of concern is the pressure in the overhead vapor phase, which can change without 
warning due to the behavior of some unidentified down stream unit. 
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Figure 19.3 − Single-loop level control of a flash drum  
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Problems with Single Loop Control 
The liquid drain flow rate is a function of several variables, including valve position, hydrostatic head 
(height of the liquid), and pressure of the vapor pushing down on the liquid (a disturbance). Suppose 
the vapor phase pressure starts decreasing. This disturbance will cause the pressure pushing down on 
the liquid interface to decrease. If the pressure decrease occurs quickly enough, the controller can 
actually be opening the valve yet the liquid drain flow rate can continue to decrease. Alternatively, if 
the pressure in the vapor phase starts increasing, the controller can be closing the valve yet the liquid 
drain flow rate can actually increase. 
 
A Feed Forward Solution 
As shown in Fig. 19.4, a feed forward control strategy includes a sensor that directly measures 
changes in a specific disturbance variable, and a feed forward model element to compute corrective 
control actions based on that measurement. In this case, a sensor is installed to detect changes in the 
pressure of the vapor phase. 

flash
valve

LC
Lsetpoint

pressure set down stream
(a disturbance)

PP

vapor

liquid

hot liquid feed

liquid
drain

overhead vapor

Feed Forward Element
Disturbance Model

Process Model

Feed Forward Element
Disturbance Model

Process Model

 
 

Figure 19.4  −  Controlling liquid level with a feed forward with feedback trim architecture 
 
 As the pressure signal is received by the feed forward element, the disturbance model 
continually predicts a liquid level impact profile, or how far and how fast the liquid level will change 
for a given change in the vapor phase pressure. For example, if the pressure begins to increase, the 
model will predict how the drum level will fall as liquid is forced out the drain faster.  
 Based on this impact profile prediction, the process model then computes a precise sequence 
of control actions (adjustments to the liquid drain valve), as well as the timing of these actions. The 
goal is to adjust the valve so that drain flow rate does not change as pressure changes, and thus the 
impending upset to drum level will be canceled.  
 With reasonably accurate models, the feed forward controller can substantially reduce the 
impact of pressure changes on liquid level. Perfect elimination of the disturbance is not likely because 
the linear feed forward dynamic models will not exactly describe the nonlinear and time varying 
behavior of this (or any real) process. 
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 To make up for plant-model mismatch, the traditional feedback level controller, represented 
by the LC in the circle attached to the tank, trims the control system. That is, the feedback controller 
rejects those portions of any pressure disturbance that make it past the feed forward controller and 
succeed in impacting the liquid level. It also enables rejection of all other disturbances to the liquid 
level control process (such as changes in feed composition) and provides set point tracking 
capabilities when required. 
 
19.4  Feed Forward Control Design 
 
Design Criteria 
Implementation of a feed forward element requires the installation of a sensor that directly measures 
the disturbance variable and the programming of a feed forward element comprised of a process and 
disturbance dynamic model. To benefit from this technology, two design criteria for success are: 
 

1) The process and disturbance dynamic models must reasonably describe the controller output to 
measured process variable behavior and disturbance to measured process variable behavior 
respectively, and 

 

2) The process dead time (controller output to measured process variable dead time) must be 
shorter than the disturbance dead time (disturbance to measured process variable dead time). 

 

The first criterion is rather obvious. If the models don’t describe the behavior of the plant, then the 
feed forward computations will be of questionable value. 
 The second criterion is more subtle. Suppose a plant has a disturbance dead time that is 
shorter than the process dead time. Further suppose a disturbance occurs and the feed forward 
controller instantly responds with appropriate control actions. Because of the dead time difference, 
the disturbance will reach the measured process variable before the controller manipulations, even 
though both happen at the same time in this example. The disturbance will already be disrupting the 
process before the first disturbance rejection control actions even arrive. 
 At the limit, the control actions need to arrive at the same time as the disturbance (equal dead 
times) for reasonable disturbance rejection. If conditions are such that control actions can arrive first 
(if the process dead time is shorter), the feed forward controller can be most effective in rejecting a 
measured disturbance.   
 
19.5  Feed Forward Control Theory 
 
Obtaining Process and Disturbance Models 
Laplace transforms are used in the next sections to make the derivation of the feed forward element 
mathematically correct. The presentation uses basic math rules, so even if you are not familiar with 
Laplace transforms, the logic of the presentation will (hopefully) make sense.  
 Methods for obtaining a process model have been discussed in detail in previous chapters. In 
short, a process data set is generated by stepping, pulsing or otherwise perturbing the controller 
output signal, u(t), and recording the measured variable, y(t), as the process responds. The process 
should initially be at steady state at the design level of operation and the response of the measured 
process variable should clearly dominate the noise in the measurement signal.  
 A process model is obtained by fitting the data with a linear dynamic equation ranging from 
first order without dead time (FO) up through second order with dead time and lead time (SOPDT w/ 
L). If we call this process model of unspecified form GP(s), then in the Laplace domain we can say 
 
     ( ) ( ) ( )PY s G s U s=                          (19.2) 
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 That is, given knowledge of the controller output, Eq. 19.2 permits the expected behavior of 
the measured process variable to be computed. This equation can rearranged to say that, given a 
change in the measured process variable, the controller output signal sequence that would cause that 
change can be back-calculated: 
 

                                                                [ ]( ) 1/ ( ) ( )PU s G s Y s=                                                     (19.3) 
 

 The disturbance model is created in the identical fashion to the process model except it is the 
disturbance variable, d(t), that must be perturbed in some fashion. Since disturbance variables are 
beyond the control of a loop (which is what makes them disturbances), it is not always possible to 
step or pulse the disturbance at will. Hence, it may be necessary to wait for moments of opportunity 
and collect data during an actual disturbance event. An alternative is to sift through data logs to find a 
disturbance event that produced data suitable for model fitting. In any case, a linear model ranging 
from FO up through SOPDT w/ L is fit to this data. In the Laplace domain, this disturbance model, 
GD(s), is expressed: 
 

                                                                   ( ) ( ) ( )DY s G s D s=                                                   (19.4) 
 

So with knowledge of changes in the disturbance variable (provided by the added sensor), Eq. 19.4 
permits the impact profile of each disturbance on the measured process variable to be computed. 
 
Deriving the Feed Forward Element 
Once online, the new sensor measures the disturbance variable and the signal is fed through Eq. 19.5, 
the disturbance model of the feed forward element. This model continually updates Ydisturb as labeled 
in Fig. 19.2, which is a prediction of the impact profile (how and when the measured process variable 
will be impacted by the disturbance) as: 
 
                                                                disturb ( ) ( ) ( )DY s G s D s=                                                    (19.5) 

 
 This predicted sequence of disruption, Ydisturb(s), is then fed to Eq. 19.6, the process model of 
the feed forward element, to back calculate a series of control actions, Ufeedforward(s). The result is a 
sequence of control actions that will cause the measured process variable to behave just like this 
predicted disturbance impact profile (we add a negative sign in Eq. 19.8 to make the feed forward 
actions oppose the disturbance): 
 

                                                         [ ]feedforward disturb( ) 1/ ( ) ( )PU s G s Y s=                         (19.6) 
 

Substituting Eq. 19.5 into Eq. 19.6 completes the “disturbance model divided by process model” feed 
forward element: 
 

                                                          [ ]feedforward ( ) ( ) / ( ) ( )D PU s G s G s D s=                        (19.7) 
 

 Eq. 19.7 computes a series of control actions that cause the measured process variable to 
duplicate the predicted disturbance impact profile. A negative sign is added so the feed forward 
controller acts in a manner opposite to this, thus canceling the impact of the disturbance. This 
negative feed forward action is combined with the traditional feedback control output signal to yield 
the total controller output: 
 

                                                         total feedback feedforward( ) ( ) ( )U s U s U s= −            (19.8) 
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19.6  Limits on the Form of the Feed Forward Model 
 
Highest Model Order 
The linear model range of FO (first order) up through SOPDT w/ L (second order plus dead time with 
lead time) are mentioned in the preceding discussion because they are the choices available in Loop 
Pro. Feed forward theory permits third, fourth and higher order linear models to be used in the feed 
forward element. 
 
 When working with a real plant, obtaining data that will yield accurate values for the three 
parameters of a FOPDT model is surprisingly challenging, and an accurate FOPDT model is usually 
capable of providing effective feed forward disturbance rejection. Obtaining a data set so rich in 
dynamic information and absent of disturbance influences that it can yield accurate values for the five 
parameters of a SOPDT w/ L model is very difficult in real applications and pushes practical 
implementation near the limit. Only the rarest of applications would benefit from a model more 
complex than the choices available in Loop Pro.  
 A SOPDT w/ L process model in the time domain has the following form:  
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In the Laplace domain this same process model is expressed as follows: 
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The model of Eq. 19.10 is identical to that of Eq. 19.9. Both are linear ordinary differential equations 
with constant coefficients. If a SOPDT w/ L model is used for both the process and disturbance 
models in Eq. 19.7, the feed forward element becomes 
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Notice that both process time constants are in the numerator along with the disturbance lead time and 
the both disturbance time constants are in the denominator along with the process lead time. This 
form is referred to as a dynamic feed forward element because the time dependent variables, including 
time constants, lead times and dead times, are included in the feed forward computation. 
 
Dead Time Difference 
We discussed previously that the process dead time must be shorter than the disturbance dead time for 
effective feed forward disturbance rejection. In fact, Loop Pro does not even permit entry of a larger 
process dead time. This is not a limitation of the software but a requirement of the math. 
 If θP > θD, then Eq. 19.11 would be required to compute corrective control actions that are to 
be implemented before the disturbance change was even first detected. Knowledge of the future, an 
outcome possible in the sterile world of mathematics, is simply not possible in the real world of 
process control. Formulations that require unknowable information or impossible actions are said to 
be unrealizable. 
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 Suppose for a particular application, you determine that the disturbance dead time is indeed 
shorter than the process dead time. Best practice is to arbitrarily set the process dead time equal to the 
disturbance dead time when entering values into the feed forward input form. Disturbance rejection 
performance will suffer but at least the feed forward calculations will yield control actions that make 
physical sense. 
  
Model Order Ratio 
A second way an impossible or unrealizable feed forward model can result is through mismatching of 
the time constant and lead time terms for the process and disturbance models. As mentioned 
previously, both process time constants are in the numerator along with the disturbance lead time and 
the both disturbance time constants are in the denominator along with the process lead time.  
 A model that is physically realizable requires that the number of “time” terms in the 
numerator be less than or equal to the number of such terms in the denominator. Again, this is not a 
limitation of Loop Pro but a consequence that the mathematics must compute actions that are 
physically possible to implement. There are many ways to create a realizable feed forward element. A 
few examples of permitted and prohibited forms are illustrated below. 
 
 Permitted: FO or FOPDT Process model;  SO or SOPDT Disturbance Model 
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 Permitted: FO or FOPDT Process model;  SO w/ L or SOPDT w/L Disturbance Model 
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 Permitted: SO or SOPDT Process model;  SO or SOPDT Disturbance Model 
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 NOT Permitted: SO or SOPDT Process model;  SO w/ L or SOPDT w/L Disturbance Model 
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This last form is unrealizable because there are more “time” terms in the numerator than denominator, 
requiring computation of physically impossible actions. 
 
Positive Process Lead Required 
The model of Eq. 19.11, called a Laplace domain transfer function, can also be expressed as a rather 
complicated linear ordinary differential equation with constant coefficients in the time domain. The 
solution of this differential equation is unstable (diverges) if any of the “time” terms in the 
denominator are negative.  
 There is no concern that τD1 or τD2 in the denominator will be negative as time constants by 
definition are always positive. The process lead time, τPL, would be negative if the measured process 
variable displays an inverse (nonminimum phase) response to a step change in the controller output 
signal. But since τPL is in the denominator, it cannot be negative or the feed forward computations 
will go unstable. 
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 If your process displays an inverse response and thus yields a negative τPL after a model fit, 
best practice is to use a FOPDT model and approximate the inverse portion of the response as a long 
dead time. Interestingly, the disturbance can have a negative lead element such as that exhibited by 
the heat exchanger because the disturbance lead term is in the numerator of the feed forward element. 
 
19.7  Feed Forward Disturbance Rejection in the Jacketed Reactor 
The control objective of this investigation is the same as that used in the cascade study of Chapter 18. 
We seek to maintain the reactor exit stream temperature at set point by rejecting disturbances caused 
by changes in the cooling jacket inlet temperature. The design level of operation is a measured reactor 
exit stream temperature of 86°C. The cooling jacket inlet temperature (disturbance), normally at 
46°C, is known to spike as low as 40°C. Open loop studies establish that a controller output of 50% 
causes the reactor to steady at the design measured exit stream temperature of 86°C when the cooling 
jacket inlet temperature is at its normal (design) value of 46°C.   
 
Single Loop Disturbance Rejection 
As detailed in cascade control chapter and shown again in Fig. 19.5, the controller output is stepped 
from the design value of 50% up to 53%, then down to 47%, and finally back to 50%, forcing the 
measured reactor exit stream temperature to exhibit a clear response after each controller output step 
that dominates any measurement noise.  
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Figure 19.5 − FOPDT model fit of single loop controller output to measured process variable data 

 
A FOPDT fit of the dynamic process data as computed by Design Tools yields the model parameters: 
 

          Process Gain,  KP  = − 0.36 °C/%                       (19.16a) 
 

    Time Constant,  τP  = 1.58 min                      (19.16b) 
 

      Dead Time,  θP = 0.88 min                                  (19.16c) 
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These parameters were used in the standard IMC tuning correlation to obtain the PI tuning values: 
 

    Controller Gain, KC  =  − 2.7 %/°C                     (19.17a) 
 

    Reset Time, τI    =  1.6 min                      (19.17b) 
 
 The disturbance rejection performance of the single loop PI controller using these tuning 
parameters is shown in Fig. 19.6. The label at the upper right of the plot confirms that the PI controller 
has a direct acting proportional term, an anti-reset windup integral term, and a derivative term that is 
off.  
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Figure 19.6 − Disturbance rejection in the jacketed reactor under single loop PI  control 
       Process variable deviations reach 2.5°C (compare to Fig. 19.9)  

 
 
 The measured reactor exit stream temperature is initially steady at the design set point value 
of 86°C in Fig. 19.6. To test the controller, the cooling jacket inlet temperature is stepped from its 
design value of 46°C down to 40°C and back again. As shown, the single loop PI controller is able to 
maintain reactor exit stream temperature near the constant set point of 86°C, with deviations ranging 
as high as 2.5°C during the event. 
 
Feed Forward Disturbance Rejection 
To construct a feed forward controller, the cooling jacket inlet temperature (the disturbance) is 
measured as shown in Fig. 19.7. The signal from this disturbance temperature sensor is sent to a feed 
forward element comprised of a process model and disturbance model. 
 A FOPDT model reasonably describe the dynamics of the controller output to measured 
process variable as shown in Fig. 19.5. The parameter values of Eq. 19.16 are thus used to construct 
the process model of the feed forward element.  
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FF

 
Figure 19.7 − Jacketed reactor with disturbance sensor for feed forward control 

 
 Generating disturbance driven data can be problematic on real processes if the disturbance 
variable cannot be manipulated at will. Loop Pro permits such disturbance manipulations. As shown 
in Fig. 19.8, the cooling jacket inlet temperature is stepped from the design value of 46°C up to 49°C, 
down to 43°C and back to 46°C. The measured reactor exit stream temperature exhibits a clear 
response after each step that dominates measurement noise.  
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Figure 19.8 − FOPDT model fit of disturbance to measured process variable data 
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A FOPDT model reasonably describes the disturbance to measured process variable dynamics as 
shown in Fig. 19.8. The disturbance model parameters used to construct the disturbance model of the 
feed forward element are thus: 

  Disturbance Gain,  KD  =  0.95 
o

o
C of reactor exit stream temperature
C of cooling jacket inlet temperature

                     (19.18a) 
 

 Disturbance Time Constant,  τD   = 1.92 min                                   (19.18b) 
 
 Disturbance Dead Time,  θD  = 1.30 min                                                            (19.18c) 
 
Using the process model of Eq. 19.16 and the disturbance model of Eq. 19.18, the feed forward 
element is constructed: 
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Equation 19.19 is physically realizable because there are as many “time” terms in the denominator as 
in the numerator and because θD > θP. 
 This feed forward element is combined with the PI feedback controller used earlier in this 
chapter for the single loop PI controller study (see Fig. 19.5) to yield a feed forward with feedback 
trim architecture. Figure 19.9 shows the disturbance rejection performance of this controller. Just as 
in Fig. 19.5, the measured process variable (reactor exit stream temperature) is initialized at the 
design set point value of 86°C. To test the controller, the cooling jacket inlet temperature is stepped 
from its design value of 46°C down to 40°C and back again.  
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Figure 19.9 − Disturbance rejection in jacketed reactor under feed forward with feedback trim 
       Process variable deviations reach 1.0°C (compare to Fig. 19.5)  

 
 The feed controller with feedback trim architecture performs better than the single loop case 
in maintaining the reactor product temperature near the constant set point of 86°C. Specifically, while 
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the measured reactor exit temperature deviations for the single loop PI controller range as high as 
high as 2.5°C during the event, this advanced architecture limits the maximum deviation to less than 
1.0°C.  
 The improved performance did not come free, however, as an additional sensor, controller 
and tuning effort were required. As shown in Fig. 19.9, the feed forward controller initiated rapid 
compensating controller just after the disturbance event to minimize its impact on the measured 
process variable. Perfect disturbance rejection was not achieved because the FOPDT models only 
approximate the higher order and nonlinear behavior of the jacketed reactor process. 
 
19.8  Static Feed Forward Control 
The preceding discussion detailed the implementation of a dynamic feed forward controller. A 
dynamic feed forward controller employs the time dependent model variables in the feed forward 
computation when calculating a corrective action. These include the time constant and lead time 
terms that describe the speed of response of the process, and the dead time terms that describe the 
time delay before the response of the process begins.  
 A static feed forward controller does not consider the time dependent information in the feed 
forward computation. Only the size of response as described by the ratio of the steady state process 
gains is used. Hence, the general dynamic form of Eq. 19.11 reduces rather substantially to the static 
feed forward equation: 

                                                          )()(dfeedforwar sD
K
K

sU
P

D
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=                                               (19.20) 

As Eq. 19.20 shows, the feed forward control action is simply a constant multiplied by the current 
value of the disturbance signal. The constant is computed as the ratio of the disturbance model gain 
divided by the process model gain.  
 The benefit of static feed forward is that many commercial controllers are sophisticated 
enough to permit implementation of this simple algorithm, and hence, there is no need for 
programming models on the control computer. It should come as no surprise, however, that the loss of 
time dependent information in computing corrective actions implies some degradation in disturbance 
rejection performance.  
 Figure 19.10 shows a side-by-side comparison of disturbance rejection performance in the 
jacketed reactor for three controller architectures. For all three cases, the jacketed reactor inlet 
temperature disturbance is stepped from 46°C down to 40°C and back again.   
 The left most portion of the plot shows disturbance rejection performance using a lone PI 
controller with no feed forward element. The center of the plot shows rejection of the same 
disturbance for a PI controller with a static feed forward element. The right most portion shows the 
performance for a PI controller with a full dynamic feed forward element. 
 Disturbance rejection performance improves from left to right in Fig. 19.10 because the 
controller is provided more information in the form of models that describe the behavior of the 
process and disturbance. And while we are cautious to avoid making broad assumptions from this 
single example, it is safe to assume that this general trend will hold true in a broad range of 
applications. 
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Figure 19.10 − Comparing set point tracking of single feedback loop to that of the cascade 
 

 
19.9  Set Point Tracking Comparison of Single Loop and Feed Forward Control 
The feed forward with feedback trim architecture does not provide benefit in tracking set point 
changes and this is illustrated in Fig. 19.11 for the jacketed reactor. The trace to the left of the plot 
shows the set point tracking performance of the single loop PI controller while the trace to the right 
shows the performance when the feed forward controller is added.  
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Figure 19.11 − Comparing set point tracking of single feedback loop to that of the cascade 
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 As shown in Fig. 19.11, both architectures provide identical performance in tracking set point 
changes. This makes sense because for the feed forward with feedback trim architecture shown in Fig. 
19.2, as long as the disturbance is constant, the feedback loop works alone to control the process. 
Since the same feedback loop PI controller tuning was used in both cases, we expect the set point 
tracking performance to be identical. Based on this observation, be sure your objective is the rejection 
of one particular disturbance before considering a feed forward architecture. 
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20.  Multivariable Controller Interaction and Loop Decoupling 
 
20.1  Multivariable Process Control 
Except for cascade control, the control systems discussed to this point have all been single-loop 
architectures. That is, the control loops have had a single controller output signal that adjusts a single 
manipulated variable to impact a single measured process variable. In many real processes, however, 
there are two or more manipulated variables that when adjusted, each impact more than one measured 
process variable. These multivariable process control systems, with their loop interactions, present a 
new level of complexity for controller design. 
 Loop Pro's distillation column process, shown in Fig. 20.1, offers such a multivariable control 
challenge. It is a binary distillation column that separates benzene and toluene. The objective is to send a 
high percentage of benzene (and thus low percentage of toluene) out the top stream, and a low percentage 
of benzene (and thus high percentage of toluene) out the bottom stream. The column dynamic model 
employs tray-by-tray mass and energy calculations similar to that proposed by McCune and Gallier [ISA 
Transactions, 12, 193, (1973)]. 
 

 
 

Figure 20.1 - Distillation column has top and bottom control loops that interact 
 
 To achieve the desired benzene-toluene separation, the top controller manipulates the reflux rate 
to control the top (distillate) composition. The bottom controller adjusts the rate of steam to the reboiler to 
control the bottom stream composition. Any change in feed rate to the column acts as a disturbance to the 
process. With two manipulated variables and two measured process variables, this is commonly called a 
two-by-two multi-input multi-output (2x2 MIMO) process. 
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 To illustrate the loop interaction in this MIMO process, suppose the composition (or purity) of 
benzene in the top stream is below set point. The top controller will respond by increasing the flow rate of 
cold reflux into the column. This increased reflux flow will indeed increase the purity of benzene in the 
top stream. However, the additional cold liquid will work its way down the column, begin to cool the 
bottom, and as a result permit more benzene to flow out the bottom stream.  
 As the bottom composition moves off set point and produces a controller error, the bottom 
controller will compensate by increasing the flow of steam into the reboiler to heat up the bottom of the 
column. While this works to restore the desired purity to the bottom stream, unfortunately, it also results 
in an increase of hot vapors traveling up the column that eventually will cause the top of the column to 
begin to heat up.  
 As the top of the column heats up, the purity of benzene in the top stream again becomes too low. 
In response, the top controller compensates by further increasing the flow of cold reflux into the top of the 
column. The controller “fight," or multivariable interaction, begins.  
 
20.2  Control Loop Interaction 
Decouplers are essentially feed forward elements designed to reduce controller interaction in MIMO 
processes. The only difference between a feed forward element and a decoupler is that with a decoupler, 
the disturbance to be rejected is the action of another control loop on the process. 
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Figure 20.2 - Block diagram of top and bottom distillation control loops with “cross loop” 
interaction 
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As shown in Fig 20.2 for the distillation column, the "cross-loop disturbance" of the top stream 
composition is the bottom controller manipulations of the steam flow rate. The cross-loop disturbance of 
the bottom composition is the top controller manipulations of the cold reflux rate to the top of the column. 
 
20.3  Decouplers are Feed Forward Controllers 
Recall that a feed forward controller gains advantage by using a sensor to directly measure a 
disturbance while it is still distant from the measured process variable. A feed forward element 
receives this measurement and uses it to compute preemptive control actions designed to counter the 
impact of the disturbance just as it reaches the measured process variable.  
 A decoupler is a feed forward element where the disturbance is the cross-loop controller signal. 
Thus, a decoupler is comprised of a process model and a cross-loop disturbance model 
 

 • The cross-loop disturbance model receives the cross-loop controller signal and predicts an 
“impact profile,” or when and by how much the process variable will be impacted. 

 • Given this predicted sequence of disruption, the process model then back calculates a series 
of control actions that will exactly counteract the cross-loop disturbance as it arrives so the 
measured process variable remains constant at set point. 

 

 Implementation of a decoupler does not require an added sensor to measure the disturbance 
because the current value of the cross-loop controller signal is readily available for use by the 
decoupler. However, developing and programming the dynamic process and cross-loop disturbance 
models is required for decoupler implementation.  
 To better understand the decoupling computation and its relation to feed forward control, we 
focus here on the top control loop of the distillation column. Though we concentrate on the logic of 
the computation in this discussion, Laplace transforms are used to make the derivation of the 
decoupler mathematically correct.  
 To develop a process model for the top control loop, a data set is generated by stepping, 
pulsing or otherwise perturbing the top controller output signal, utop(t), and recording the measured 
variable, ytop(t), as the process responds. Both loops should be in manual during this data collection 
exercise. As always, the process should initially be at steady state at the design level of operation and 
the response of the top process variable should clearly dominate the noise in the measurement signal.  
 This process data set is fit with a linear dynamic model ranging from first order without dead 
time (FO) up through second order with dead time and lead time (SOPDT w/ L). If we call this top 
composition response to top controller output model GTT(s), then in the Laplace domain we can say: 
 
                                                         Ytop(s) = GTT(s)Utop(s)                                     (20.1) 
 
That is, given knowledge of the top controller output, Eq. 20.1 permits the expected behavior of the 
top process variable to be computed. This equation can be rearranged to say that, given a change in 
the top process variable, the top controller output signal sequence that would cause that change can be 
back-calculated as: 
 

                                                       Utop(s) = [1/GTT(s)] Ytop(s)                                                         (20.2) 
 
 The cross-loop disturbance model is created by perturbing the cross-loop controller output, 
which in this case is the bottom controller, ubottom(t), and recording how ytop(t) responds. Again, both 
controllers should be in manual during this data collection exercise. We fit a linear dynamic model to 
this cross-loop disturbance data and call the resulting top composition response to bottom controller 
output model GTB(s).  
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In the Laplace domain we can then say: 
 
                                                        Ytop(s) = GTB(s)Ubottom(s)                                                  (20.3) 
 
Hence, with knowledge of controller signal ubottom(t), Eq. 20.3 lets us compute the impact profile of 
this cross loop disturbance on the top process variable, ytop(t). 
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Figure 20.3 - Block diagram of top and bottom distillation control loops 
with cross loop interaction and decouplers 

 
 
 We now have the models needed to construct the decoupler Dtop(s) as shown in Fig 20.3. As 
the bottom controller makes changes in )(bottom

feedback tu , the signal is sent to Eq. 20.4, which is the cross-

loop disturbance model portion of the top decoupler. This model continually updates )(*
top ty , which 

is a prediction of the impact profile or how and when the top process variable will be impacted by the 
actions of the bottom controller. That is: 
 

                                                        )()()( bottom
feedbackTB

*
top tUsGsY =                                                    (20.4) 
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 This predicted sequence of disruption, )(*
top ty , is then fed to Eq. 20.5, the process model 

portion of the top decoupler, to back calculate a series of control actions, )(top
decouple tu . This results in a 

sequence of control actions that will cause the top process variable to behave just like the predicted 
cross-loop disturbance impact profile (we add a negative sign in Eq. 20.7 to make the decoupling 
actions oppose the disturbance): 

 

                                                     )()()( *
top

TT

top
decouple

1 sYsGsU ⎥⎦
⎤

⎢⎣
⎡

=                                                   (20.5) 

 
Substituting Eq. 20.4 into Eq. 20.5 completes the top decoupler, Dtop(s), that as shown in Eq. 20.6, 
computes decoupling actions based on knowledge of the bottom controller actions, )(bottom

feedback tu : 
 

                               )()()()(
)()( bottom

feedbacktop
bottom
feedback

TT

TBtop
decouple sUssUsG

sGsU D== ⎥⎦
⎤

⎢⎣
⎡                              (20.6) 

 
 Eq. 20.6 computes a series of control actions that cause the top process variable to duplicate 
the predicted cross-loop disturbance impact profile. A negative sign is added so the decoupler acts in 
a manner opposite to this, thus canceling the impact of the cross loop disturbance. This negative 
decoupling action is combined with the traditional feedback control signal of the top controller to 
yield the total controller output: 
                                                 )()()( top

decouple
top
feedback

top
total sUsUsU −=                                             (20.7) 

 
The bottom decoupler can be derived in an analogous manner as: 
 

                             )()()()(
)()( top

feedbackbottom
top
feedback

BB

BTbottom
decouple sUssUsG

sGsU D== ⎥⎦
⎤

⎢⎣
⎡                           (20.8) 

 
 And thus, to implement a 2x2 top and bottom decoupler, we need to develop four dynamic 
process models. For the top decoupler, the FOPDT process and disturbance model parameters entered 
are:  
 

 Process model:  GTT(s) = top composition response to top controller output model 
 Disturbance model: GTB(s) = top composition response to bottom controller output model 
 
For the bottom decoupler, the FOPDT process and disturbance model parameters entered are: 
 

 Process model: GBB(s) = bottom composition response to bottom controller output 
 Disturbance model: GBT(s) = bottom composition response to top controller output 
 
These models are used to develop two decouplers that must be programmed into the control computer 
and are implement as shown in Fig 20.3: 
 

                       Top decoupler:         ⎥⎦
⎤

⎢⎣
⎡

= )(
)()(

TT

TB
top sG

sGsD             (20.9) 
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                   Bottom decoupler:   ⎥⎦
⎤

⎢⎣
⎡

= )(
)()(

BB

BT
bottom sG

sGsD                       (20.10) 

 
20.4  Distillation Study - Interacting Control Loops 
We will study decouplers in the next section. Here we explore the multivariable interactions that 
occur between the top and bottom controllers on the distillation column when they are designed and 
implemented as independent or stand-alone loops.  
 The control objective is the design and tuning of a PI controller that can track set point steps 
in the top composition from 92% and 94% while the bottom composition remains constant at 1.5%. 
The design level for this study includes a feed flow rate to the column of 547 Kg/min (note that this is 
not the default startup value) and the steady state operating conditions: 
 
                         Top  utop(t) =   52 %  ytop(t)      =   92 % 
 

                    Bottom  ubottom(t) =   48 %  ybottom(t)  =   1.5 % 
 
Fig 20.1 shows the distillation column at these design conditions, only in that figure the control loops 
are in automatic.  
 Before tuning the loops, we investigate the dynamic behavior of the column using open loop 
doublet tests. The top controller output is stepped from 52% up to 55%, down to 49% and back to 
52%. After the process settles, the bottom controller is stepped from 48% up to 51%, down to 45% 
and back to 48%. Fig. 20.4 shows the process variable responses to these tests. 
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Figure 20.4 - Open loop step tests on the distillation column's top and bottom controller 
 
 The upper most trace of Fig. 20.4 shows that the top composition process variable is mildly 
nonlinear. That is, ytop(t) responds both up and down from the design level of operation in roughly the 
same magnitudes whether forced by utop(t) or ubottom(t).  
 The bottom composition loop, on the other hand, is extremely nonlinear. In particular, the 
response of the bottom process variable is three times larger when ybottom(t) is increasing from the 
design level of operation compared to when it is decreasing. As shown in Fig. 20.4, this is true 
whether it is utop(t) or ubottom(t) that is forcing the response. 
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 This extreme nonlinear behavior provides added control challenges beyond the loop 
interaction issue. To meet the challenge, we take advantage of the information in the above plot to 
design the dynamic tests for modeling and tuning. Rather than the standard doublet, we will pulse 
each variable in one direction only. We choose the direction that yields parameters leading to the 
most stable controller design.  
 Recall that tuning correlations compute controller gain, KC, as proportional to the inverse of 
process gain, KP. So for a conservative design, we want to use large values of KP in the correlations to 
obtain small (and thus less aggressive) values of KC. Exploiting the information contained in Fig. 
13.4, we achieve the largest values of KP by pulsing utop(t) up and ubottom(t) down when generating our 
dynamic test data. 
 
Top Composition Control 
We perform a pulse test to generate dynamic process data for the design of the top composition 
controller. As shown in Fig. 13.5, the top controller output, utop(t), is stepped from its design value of 
52% up to 54% and back. The bottom controller is in manual mode during this test. Design Tools is 
used to fit a FOPDT model to the data. The process data and model fit are shown in Fig. 20.5. 
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Figure 20.5 - Top composition response to top controller output pulse 
and FOPDT fit of process data 

 
 The FOPDT dynamic model provides a good approximation of the process data. Hence, 
GDT(s), the top composition response to top controller output model has the parameters: 
 

   Process Gain:  KP, TT = 1.1 %/%  
  

   Overall Time Constant: τP, TT = 62 minutes 
    

   Apparent Dead Time: θP, TT = 24 minutes 
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The FOPDT dynamic model parameters are used in the IMC correlation to obtain initial estimates for 
PI controller tuning. Recalling that the standard IMC correlation uses a closed loop time constant, τC, 
as the larger of  0.1τP  or  0.8θP, then Design Tools computes the PI tuning parameters: 
 
   Controller Gain, KC, top = 1.3 %/% 
 

   Reset Time, τI, top =  62 minutes 
 
Returning to the distillation process, a PID controller is selected and these tuning values are entered. 
We turn derivative action off on the controller design menu, resulting in the desired PI controller 
form. 
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Figure 20.6 - Set point tracking capability of top loop under PI control 
when bottom loop is in manual mode 

 
 Controller performance is tested in tracking set point steps between 92% and 94% as shown 
in Fig 20.6. The bottom loop remains in manual mode during the evaluation. The top loop shows 
desirable set point tracking performance, with a rapid response, minimal overshoot and rapid decay. 
However, the corresponding movement in the bottom composition from the design level of operation 
shown in Fig. 20.6 highlights the need for a second controller on the bottom composition stream to 
properly operate the distillation column. 

 
Bottom Control and Loop Interaction 
The design of the bottom PI controller is analogous to that of the top controller. A pulse test is 
performed as shown in Fig. 20.7 by stepping the bottom controller output, ubottom(t), from its design 
value of 48% down to 46% and back. The top controller is in manual mode during this test. Design 
Tools is used to fit a FOPDT model to the data and the model fit is also shown in Fig. 20.7. 
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 The FOPDT dynamic model provides a good approximation of the process data. Hence, 
GBB(s), the bottom composition response to bottom controller output model has the parameters: 
 

   Process Gain:  KP, BB =  −0.22 %/%  
  

   Overall Time Constant: τP, BB = 53 minutes 
    

   Apparent Dead Time: θP, BB = 14 minutes 
 
The FOPDT dynamic model parameters are used in the IMC correlation to obtain initial estimates for 
PI controller tuning. Using the standard IMC correlation, Design Tools computes the PI tuning 
parameters: 
   Controller Gain, KC, bottom =  −9.7 %/% 
 

   Reset Time, τI, bottom =  53 minutes 
 
Returning to the distillation process, a PID controller is selected and the above tuning values are 
entered. We turn derivative action off on the controller design menu, resulting in the desired PI 
controller form. 
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Figure 20.7 - Bottom composition response to bottom controller output pulse 
and FOPDT fit of process data 

 
 The performance of the bottom PI controller in tracking set point steps in bottom composition 
(not shown) while the top control loop is in manual mode reveals desirable performance. Thus, both 
the top and bottom control loops perform well when implemented individually while the cross loop 
controller of each is in manual mode. 



 

218 
 

Practical Process Control® by Douglas J. Cooper 
Copyright © 2005 by Control Station, Inc. 

All Rights Reserved 

 Both the top and bottom PI controllers are put in automatic while leaving the controller 
tuning values unchanged. The same top composition set point step made in Fig 20.6 is repeated. 
Recall from that figure that when the bottom controller was in manual mode, the top controller was 
able to complete the set point step response in about 200 minutes. Fig. 20.8 shows that with both 
controllers in automatic, the set point step response of the top composition drags on for well over 
1500 minutes.  
 The reason for this slow response is evident in Fig. 20.8. Notice how both utop(t) and ubottom(t) 
continually climb during the transient as each tries to compensate for the actions of the other. That is, 
as the top controller sends more and more cold reflux down the column to raise the purity of the top 
composition, the bottom controller responds by sending more and more steam up the column in an 
attempt to maintain the bottom composition at set point. One is working to cool while the other 
attempts to heat. This controller fight, or interaction, is a clear detriment to high-performance control. 
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Figure 20.8 - Top and bottom loop fight each other, thus degrading set point tracking 

performance of top loop 
 
20.5  Distillation Study - Decoupling the Loops 
As discussed previously, decouplers are feed forward elements designed to reduce this loop 
interaction. Each decoupler design requires a process model and cross-loop disturbance model. For 
the process models, we can use the FOPDT model fits already developed during PI controller tuning 
and shown in Figs. 20.5 and 20.7. The task of developing cross-loop disturbance models remains.  
 No additional testing is needed to generate data for the cross-loop disturbance models 
because during the previous dynamic tests, both the top and bottom loops were in manual mode. 
Hence, these data sets already include information that describe how the top controller impacts the 
bottom composition and how the bottom controller impacts the top composition. 
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 The top controller pulse test shown in Fig 20.5 not only forced a response in the top 
composition, but also impacted the bottom composition. We read that file into Design Tools, label the 
proper columns of data and fit a FOPDT model. The result is shown in Fig. 20.9. The FOPDT 
dynamic model provides a good approximation of this cross-loop disturbance data. Hence, GBT(s), the 
bottom composition response to top controller output model has the parameters: 
 

   Process Gain:  KD, BT =  0.24 %/%  
  

   Overall Time Constant: τD, BT = 54 minutes 
    

   Apparent Dead Time: θD, BT = 22 minutes 
 
 Similarly, the bottom controller pulse test shown in Fig. 20.7 not only forced a response in 
the bottom composition, but also impacted the top composition. That data is read into Design Tools, 
the proper columns of data are labeled and a FOPDT model is fit. The result is shown in Fig. 20.10. 
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Figure 20.9 - Bottom composition response to top controller output pulse 
and FOPDT fit of process data 

 
The FOPDT dynamic model provides a good approximation of this cross-loop disturbance data. 
Hence, GBD(s), the top composition response to bottom controller output model has the parameters: 
 
   Process Gain:  KD, TB =  −1.0 %/%  
  

   Overall Time Constant: τD, TB = 63 minutes 
    

   Apparent Dead Time: θD, TB = 21 minutes 
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Figure 20.10 - Top composition response to bottom controller output pulse 
and FOPDT fit of process data 

 
 
 All process models and interaction models are now defined in FOPDT form. Returning to 
Loop Pro, the PID with Decoupler controllers are chosen for both top and bottom loops. The PI 
tuning parameters for the feed back loops remain as before. The FOPDT decoupler model values 
required by Loop Pro are entered. 
 For the top decoupler, the FOPDT process model entered is GTT(s) and the cross-loop 
disturbance model entered is GTB(s). For the bottom decoupler, the FOPDT process model entered is 
GBB(s) and the cross-loop disturbance model entered is GBT(s). 
 When the top loop is closed, an error message results telling us that the theory requires that the 
process dead time must be less than or equal to the disturbance dead time. This is a requirement of the 
theory and not a limitation of Loop Pro (for more information, please review the design criteria 
discussed in the feed forward chapter). Hence, we set θP, TT = θP, TB = 21 minutes to result in a 
mathematically rational design. That dead time change is underlined in Fig. 20.11 below. 
 Controller performance is again tested by stepping the top set point between 92% and 94% as 
shown in Fig. 20.11. The bottom loop remains closed during the evaluation. The decouplers succeed 
in restoring a set point tracking performance that is nearly equal to that of the lone controller as 
shown in Fig. 20.6. With two controllers and two decouplers, however, the bottom loop is now able 
to maintain the bottom composition close to set point throughout the event. 
 While we have achieved our goal of decoupling the control loop interactions, a somewhat 
disturbing result is the constant rapid movement in the controller output as shown in Fig. 20.11. This 
control signal behavior will cause the mechanical valves to "chatter" in almost a nervous fashion. It is 
a situation that likely will not be tolerated because valve wear and the consequent maintenance costs 
will become an issue in many plants.  
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Figure 20.11 - Improved set point tracking capability of top loop and reduced interaction with bottom 

loop when both are under PI control with decouplers 
 
 The reason for this behavior is quite subtle and understanding why it occurs is important. For 
the models used in the bottom decoupler, the process model gain, KP, BB, is  −0.22 %/% and the cross 
loop disturbance gain, KD, BT, is 0.24 %/%. In absolute value, |KD, BT| > |KP, BB|, which says that the top 
controller (the disturbance) has a larger influence on the bottom composition than does the bottom 
controller.  
 The relative size of the gains displayed by the process and used in the decouplers is 
fundamental to stable control. We will learn more in the next chapter, but it is reasonable to postulate 
that a decoupler must have at least as much influence on its own process variable as does any 
disturbance. 
 Following this assumption, we lower the cross-loop disturbance gain of the bottom loop 
decoupler so that in absolute value |KD, BT| = |KP, BB| as underlined in Figure 20.12. Repeating the top 
set point step test as before, we observe in Fig. 13.12 that decoupling performance is maintained yet 
the controller output chatter is eliminated. 
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Figure 20.12 - Decoupled loops do not chatter with slight adjustment to one model parameter 
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21.  Modeling, Analysis and Control of Multivariable Processes  
 
21.1  Generalizing 2x2 Multivariable Processes 
As we learned when studying the distillation column in the previous chapter, multivariable loop 
interaction presents a substantial control challenge. To explore in more detail the nature and 
challenges of multivariable control, we generalize all two-by-two multi-input multi-output (2x2 MIMO) 
dynamic processes into a standard form. 
 Following the nomenclature established in the popular texts, Gij represents the dynamic 
behavior of the ith measured process variable response to the jth controller output signal. Hence, as 
shown in Fig. 21.1, process G11 describes the direct dynamic response of measured process variable 
PV1 to changes in controller output CO1, and interaction G21 describes the cross-loop dynamic 
response of PV2 to changes in CO1. 
 

CO1

CO2

PV1

PV2

G11

G22

G21G12

 
 

Figure 21.1 - General multivariable architecture 
 
 The multi-loop Custom Process in Loop Pro enables the simulation of a broad range of 2x2 
MIMO processes that follow this general form. Figure 21.2 shows the multi-loop Custom Process 
graphic for building such simulations. 
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G21
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Figure 21.2 - Loop Pro's Multi-Loop Custom Process 
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21.2  Relative Gain as a Measure of Loop Interaction 
Before exploring different multivariable process behaviors, we introduce the concept of relative gain. 
Relative gain, λ, is popular because it:  
  - provides a convenient measure of loop interaction,  
  - is easy to compute, and  
  - is dimensionless so it is not affected by the units of the process data. 
 
Relative gain is computed from the steady state gains of the process and cross-loop interaction models 
that best describe observed process behavior (that result from model fits of process data). Following 
the nomenclature we have established, relative gain is computed: 
 

                                                             
21122211

2211

KKKK
KK
−

=λ                                                        (21.1) 

 
In the following sections we explore what the size and sign of λ implies for multivariable loop 
interaction and the ease with which a process can be controlled.  
 Before starting that study, consider that a 2x2 MIMO process has two controllers (COA and 
COB) that adjust two final control elements (FA and FB) to regulate two process variables (PVA and 
PVB). The controllers are connected to the process variables and final control elements by wires. 
Consequently, the control loops can be wired two ways:  
 
 1) COA manipulates FA to control PVA ;  COB manipulates FB to control PVB 
 

 2) COA manipulates FA to control PVB ;  COB manipulates FB to control PVA 
 
Each combination yields a different value of λ for a multivariable process. What we will learn is that: 
 
 

   control loops should always be paired (wired) where possible 
      so the relative gain is positive and as close as possible to one. 

 
 
21.3  Effect of KP on Control Loop Interaction 
To appreciate the usefulness of relative gain as a measure of cross-loop interaction, consider the 
variety of 2x2 MIMO cases listed in Table 21.3. These cases are simulated and studied here using 
Loop Pro's Custom Process feature shown in Fig 21.2.  
 All of the direct process and interaction models used in the Custom Process simulations are 
first order plus dead time (FOPDT), and all time constant and dead time parameters for all the 
simulations in Table 21.3 are: 
    Process time constant, τP = 10  
    Dead time, θP = 1  
 
Also, all of the investigations use two PI controllers with no decoupling and with:  
      

    Controller gain, KC = 5  
    Reset time, τI = 10 
 
For all examples, when one PI controller is put in automatic while the other is in manual mode, that 
controller tracks set point changes quickly and with little oscillation. The issue we study here is 
process behavior when both PI controllers are put in automatic at the same time. 
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For each simulation case study, the direct process and cross-loop interaction gains are: 
 

   
              direct             cross-loop       cross-loop          direct  
             CO1  PV1         CO1  PV2       CO2  PV1      CO2  PV2 
 

  Case  K11       K21       K12            K22         λ       
 
     1   1   1.1 1.1   1     - 4.8 
 

     2a   0     1.1 0.5   1       0.0 
     2b  -1 3.0 1.1   1       0.2 
     2c   1                            -3.0 0.5   1       0.4 
 

    3   1                        -1.1 0.5      1       0.6 
 

     4   1     0 0.5   1       1.0 
 

     5   1   1.1 0.5   1       2.2 
 

     6   1   1.1 .85   1     15.4 
 

Table 21.3 - Exploring relative gain, λ, as a measure of loop interaction 
 
Case 1:  λ < 0 
When the cross-loop interaction gains are larger then the direct process gain, as is true for Case 1 in 
Table 21.3, then each controller has more influence on its cross-loop measured process variable than 
it does on its own direct measured process variable. As listed in the table, the relative gain, λ, 
computed by Eq. 21.1 for this case is negative.  
 Figure 21.4 shows the set point tracking performance of the Case 1 process when both loops 
are under PI control with no decoupling (remember that for all simulations, τP = 10 and θP = 1, with 
KC = 5 and τI = 10). As each controller works to keep its direct measured process variable on set 
point, every control action causes an even larger disruption in the cross-loop process variable. And 
the harder each controller works, the worse the situation. As shown in Fig. 21.4, the result is an 
unstable, diverging system. 
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Figure 21.4 - λ < 0  indicates incorrect loop pairing and an unstable process under PI control 
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A negative relative gain implies that the loop pairing is incorrect. That is, each controller is wired to 
the wrong measured process variable. The best course of action is to switch the controller wiring. 
This switches the cross-loop gains in Table 4.3 to direct process gains and vice versa. 
 Switching the loop pairing recasts Case 1 into a process with a relative gain of λ = 5.8. This 
loop interaction behavior is somewhere between Case 5 and Case 6. As we will learn, a process with 
this relative gain is challenging to control, but it is closed-loop stable and the loops can be decoupled 
following standard methodologies. 
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Figure 21.5 - Case 1 can be stabilized by detuning one of the loops and reversing its action 
 
 As an alternative to switching the pairing, one of the controllers can be detuned (the KC can 
be lowered) and the control action on that controller reversed (e.g. if it is direct acting make it reverse 
acting). This tricks the control system into making reasonable corrective actions. Figure 21.5 shows 
that the Case 1 process can be stabilized by detuning and reversing the action of loop 1 as indicated 
by the KC circled in the figure. The resulting set point tracking performance is rather unsatisfactory, 
however, and we do not recommend this approach as a general solution. 
  
Case 2:  0 < λ ≤ 0.5 
For the relative gain to be exactly zero (λ = 0), one of the direct process gains must be zero. A direct 
process gain of zero means that a controller has no impact on the measured process variable it is 
wired to. Clearly there can be no regulation if a controller has no influence.  
 Case 2a in Table 21.4 has K11 = 0, implying that CO1 has no influence on PV1. Yet because 
the cross-loop gain K12 is not zero, changes in CO2 will disrupt PV1. If a measured process variable 
can be disrupted but there is no means to control it, the result is an unstable process under PI control 
(no figure shown). Because both cross-loop gains are not zero in Case 2a, the loop pairing should be 
switched in this case to give each controller direct influence over a measured process variable. This 
would recast Case 2a into a process with a λ = 1.0, which is the interaction measure most desired. We 
study such a process in Case 4 below. 
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 When the relative gain is near zero (0 < λ ≤ 0.5), then at least one of the cross-loop gains is 
large on an absolute basis (e.g. Case 2b and 2c). Under PI control with no decoupling and using the 
base tuning values of KC = 5 and τI = 10, both of these processes are unstable and show considerable 
loop interaction (no figure shown). Detuning both controllers to KC = 2 and τI = 10 restores stability 
but control-loop interaction is still significant. 
 Again, the best course of action is to switch loop pairing. With the wiring switched, Case 2b 
yields λ = 0.8 and Case 2c yields λ = 0.6, putting both relative gains closer to the desired value of 
one. While both processes still display loop interaction, the processes become stable under PI control 
with no decoupling, even with fairly aggressive PI controller tuning.  
 
Case 3:  0.5 ≤ λ < 1 
When the relative gain is between 0.5 and one, the cross-loop interactions cause each control action to 
be reflected and amplified in both process variables. As shown in the left most set point steps of Fig. 
21.6 for a case where λ = 0.6, this interaction leads to a measured process variable response that 
includes significant overshoot and slowly damping oscillations.  
 This amplifying interaction exists when stepping the set point of either loop. It grows more 
extreme and ultimately leads to an unstable process as λ approaches zero (see Case 2). The interaction 
becomes less pronounced as λ approaches one (see Case 4). 
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Figure 21.6 - Impact of λ on PI control loop interaction with no decoupling 

 
Case 4:  λ = 1 
A relative gain of one occurs when either or both of the cross-loop gains are zero. In Case 4, K21 is 
zero so controller output CO1 has no impact on the cross-loop measured process variable PV2. 
However, since K12 is not zero as listed in Table 21.4, changes in CO2 will impact PV1. 
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 The second set point steps in Fig. 21.6 show the control performance of the Case 4 process 
when the set point of PV1 is changed. As expected, the set point tracking actions of CO1 have no 
impact on PV2. While not shown, a set point step in PV2 would cause a some cross-loop disruption in 
PV1 because of loop interaction. 
 When both cross-loop gains are zero, the loops do not interact. Such a system is naturally and 
completely decoupled and the controllers should be designed and tuned as single loop processes. 
 
Case 5:  λ > 1 
Opposite to the observations of Case 3, when the relative gain is greater than one, the control loops 
fight each other. Specifically, the cross-loop interactions act to restrain movement in the measured 
process variables, prolonging the set point response. The third set point steps in Fig. 21.6 illustrate 
this behavior for a case where λ = 2.2. We also observed this prolonged interaction in the distillation 
case study in the previous chapter. 
 As stated earlier, a process with a relative gain that is positive and close to one displays the 
smallest loop interactions (is better behaved). For Case 5, switching the loop pairing would yield a 
very undesirable negative λ. This means that the loops are correctly paired and the significant loop 
interaction is unavoidable.  
 
Case 6:  λ >> 1 
As the cross-loop gain product, K12K21, approaches the direct process gain product, K11K22, the 
relative gain grows and the restraining effect on movement in the measured process variables 
discussed in Case 5 becomes greater. This is illustrated in the right most set point steps in Fig. 21.6 
for a case where λ = 15.4. Again, switching the loop pairing would yield a negative λ so the loops are 
correctly paired and the significant loop interaction is unavoidable. Interestingly, as the cross-loop 
gains grow to the point that their product is larger then the direct process gain product (when K12K21 > 
K11K22), then λ becomes negative and we circle back to Case 1. 
 
21.4  Effect of τP on Control Loop Interaction 
The relative gain provides a convenient means for predicting how the size and sign of the direct 
process and cross-loop gains will impact loop interaction on a 2x2 process. Here we learn that while 
τP is fundamental to loop interaction dynamics, it rarely plays as important a role as the gains. There 
is no simple equation analogous to relative gain we can use for this study, so we learn by example.  
 To explore the role of cross-loop time constants on loop interaction, we define a set of 2x2 
processes where for all cases:  
 

 Steady State Gains:   K11 = 1.0,   K21 = 0.5,   K12 = 0.5,   K22 = 1.0 
 Dead Times:   θ11 = 1.0,    θ21 = 1.0,   θ12 = 1.0,    θ22 = 1.0  
 
All of the investigations use two PI controllers with no decoupling and with:  
      

    Controller gain, KC = 5  
    Reset time, τI = 10 
 
Based on Eq. 21.1, all three cases have a relative gain λ = 1.3, which describes a process with some 
loop interactions, but as explained in Case 5, is generally well-behaved. 
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                    direct             cross-loop        cross-loop               direct        
                   CO1  PV1         CO1  PV2         CO2  PV1           CO2  PV2        
 

        Case τ11  τ21  τ12  τ22                 
 
        base  10   10  10  10    

          7  10     30  10  10     

          8  10       3  10  10  
 

 
 
 

Table 21.7 - Exploring the impact of cross-loop time constants on loop interaction 
 

 With the gains and dead times as listed above, we investigate a base case and two variations 
that focus on time constants. In particular, the direct process and cross-loop interaction time constants 
explored here are listed in Table 21.7. 
 
Base Case 
The base case in Table 21.7 establishes the dynamic behavior when the direct process and cross-loop 
time constants have equal influence. As shown in the left most set point steps of Fig. 21.8, the loop 
interactions for the base case are modest and display some restraint in the movement of the measured 
process variables. This prolongs the set point response as discussed in Case 5 and shown to the right 
in Fig. 21.6 above. 
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Figure 21.8 - Impact of τP  on PI control loop interaction with no decoupling 
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Case 7:  Cross-Loop τP  Large 
This process, with τ21 = 30 while τ11 = τ22 = τ12 = 10, considers a case where one of the cross-loop 
time constants is large relative to the direct process time constants. A short time constant implies a 
fast reaction time. Hence, CO1 and CO2 can correct for errors in their direct process variables quickly, 
while the disruptive influence of CO1 on cross-loop process variable PV2 proceeds slowly in 
comparison.   
 Because each controller can quickly impact its own direct process variable, each is capable of 
correcting for the disruptive effects of the slow moving cross-loop interaction as it arrives. And  
consequently, as shown in the second set point steps of Fig. 21.8, performance is improved relative to 
the base case when using two PI controllers with no decoupling and with KC = 5 and τI = 10. 
Specifically, the set point tracking performance of PV1 in case 7 shows less oscillation as it moves to 
the new set point, and the size and speed of disruption of CO1 on PV2 is lessened in comparison to the 
base case. 
 
Case 8:  Cross-Loop τP  Small 
Opposite to Case 7, with τ21 = 5 while τ11 = τ22 = τ12 = 10, Case 8 in Table 21.7 considers a process 
where one of the cross-loop time constants is small relative to the direct process time constants. Thus, 
CO1 is able to disrupt cross-loop process variable PV2 faster than CO2 is able to correct the problem. 
 Because the cross-loop disruption is fast relative to the controller's ability to regulate its own 
direct process variable, the third set point steps of Fig. 21.8 show that control performance degrades 
relative to the base case. As shown in the figure, the set point tracking performance of PV1 in case 8 
shows greater oscillations and a larger overshoot as it moves to the new set point. Also shown is that 
the disruption of CO1 on PV2 is significantly greater here than the base case. 
  
21.5  Effect of θP on Control Loop Interaction 
Similar to the time constant, dead time plays a secondary role in loop interaction dynamics compared 
to the relative gains. We continue to learn by investigation with a set of 2x2 processes where for all 
cases:  
 
 Steady State Gains:   K11 = 1.0,   K21 = 0.5,   K12 = 0.5,   K22 = 1.0 
 Time Constants:    τ11 = 10,     τ21 = 10,     τ12 = 10,     τ22 = 10  
 
controlled by two PI controllers with no decoupling and with:  
  
    Controller gain, KC = 5  
    Reset time, τI = 10 
 
Based on Eq. 21.1, all three cases have a relative gain λ = 1.3, which describes a process with some 
loop interactions, but as explained in Case 5, is generally well-behaved. We again explore a base case 
and two variations where: 
 
Base Case 
The base case in Table 21.9 establishes the dynamic behavior when the direct process and cross-loop 
dead times are equal. As shown in the left most set point steps of Fig. 21.10, the loop interactions for 
the base case are identical to those shown in the base case of Fig. 21.8 above. 
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                    direct             cross-loop        cross-loop               direct            
                   CO1  PV1         CO1  PV2         CO2  PV1           CO2  PV2        
 

   Case θ11  θ21  θ12  θ22                
 
   base   1    1   1   1     
 

     9   1      3   1   1       

    10   1     0.3   1   1       
 

 
 

Table 21.9 - Exploring the impact of cross-loop dead time on loop interaction 
 

 
Case 9:  Cross-Loop θP  Large 
This case, with θ21 = 3 while θ11 = θ22 = θ12 = 1, considers a process where one of the cross-loop dead 
times is large relative to the direct process dead times. Hence, there is a short delay before a change in 
CO1 impacts PV1 and a long delay before it begins disrupting cross-loop variable PV2.  
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Figure 21.10 - Impact of θP  on PI control loop interaction with no decoupling 
 
 When the second set point steps occur in the middle of Fig. 21.10, CO1 begins moving PV1 to 
track the change. As a consequence, CO1 also imparts a disruptive event to PV2. Because of the cross-
loop dead time, there is a relatively long delay before the disruption finally impacts PV2.  
 When the disruption to PV2 does begin, CO2 takes action to reject the disturbance. And as 
CO2 changes, the cross-loop interaction causes the control actions to be reflected back to PV1. The 
extended delay in one of the steps of this back and forth interaction produces an "echo effect" in the 
set point response of PV1. This can be seen in Fig. 21.10 as a more pronounced second dip in the 
response compared to that evident in the base case. 
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Case 10:  Cross-Loop θP  Small 
Opposite to case 9, with θ21 = 0.3 while θ11 = θ22 = θ12 = 1, we consider a case where one of the cross-
loop dead times is small relative to the direct process dead times. Hence, there is a relatively short 
delay before a change in CO1 imparts a cross-loop disruption to PV2.  
 When the disruption to PV2 begins, CO2 takes action to reject the disturbance and these 
actions are reflected back to PV1. As shown in the right most right most set point steps of Fig. 21.10, 
the shorter delay has little impact on loop interaction. The plot reveals that controller performance is 
very similar to that of the base case. 
 

 
21.6  Decoupling Cross-Loop KP Effects 
Recall that a decoupler is a feed forward element where the measured disturbance is the actions of a 
cross-loop controller. Analogous to a feed forward controller, a decoupler is comprised of a process 
model and a cross-loop disturbance model. The cross-loop disturbance model receives the cross-loop 
controller signal and predicts an “impact profile,” or when and by how much the process variable will 
be impacted. Given this predicted sequence of disruption, the process model then back calculates a 
series of control actions that will exactly counteract the cross-loop disturbance as it arrives so the 
measured process variable, in theory, remains constant at set point. 
 Here we explore how perfect decouplers can reduce cross-loop interaction. A perfect 
decoupler employs the identical models in the decoupler as is used for the process simulation. Be 
aware that in real-world applications, no decoupler model exactly represents the true process 
behavior. Hence, the decoupling capabilities shown here must be considered as the best possible 
performance. We revisit the "no decoupler" cases explored earlier in this chapter as summarized in 
Table 21.3. 
 
Case 1:  λ < 0  
A negative relative gain implies that the loop pairing is incorrect. Decoupling is not explored for Case 
1 in Table 21.3 because the best course of action is to switch the controller wiring to produce a 2x2 
process with a relative gain of λ = 5.8. This loop interaction behavior is somewhere between Case 5 
and Case 6 discussed below. 
 
Case 2:  0 < λ ≤ 0.5 
A relative gain of exactly zero (λ = 0) implies that at least one controller has no impact on the 
measured process variable it is wired to. There can be no regulation if a controller has no influence. 
Hence, decoupling becomes meaningless for this case. 
 When the relative gain is near zero (0 < λ ≤ 0.5), PI controllers with no decoupling must be 
detuned to stabilize the 2x2 system. Even when the PI controllers are detuned, perfect decouplers (the 
identical models are used in the decouplers as are used for the process simulation) result in an 
unstable system (no figure shown). Detuning the decouplers (lowering the disturbance model gain) 
will restore stability but interaction remains significant and general performance is poor. Again, the 
best course of action is to switch loop pairing.  
 
Case 3:  0.5 ≤ λ < 1 
When the relative gain is between 0.5 and one, the cross-loop interactions cause each control action to 
be reflected and amplified in both process variables. As shown in the left most set point steps of Fig. 
21.11 for the case of λ = 0.6, PI controllers with perfect decouplers virtually eliminate cross loop 
interactions. This is not surprising since the relative gain is positive and close to one. 
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Case 4:  λ = 1 
A relative gain of one occurs when either or both of the cross-loop gains are zero. In Case 4 of Table 
21.3, K21 is zero so controller output CO1 has no impact on the cross-loop measured process variable 
PV2. Consequently, a perfect decoupler will provide no benefit for this loop. And as shown in Fig. 
21.11 for the middle set point steps, while a perfect decoupler causes no harm, a decoupler 
implemented on a real process will likely have imperfect models and would then actually create loop 
interaction. 
 Table 21.3 shows that K12 is not zero, however, so changes in CO2 will impact PV1. A perfect  
decoupler will virtually eliminate cross loop interaction for information flow in this direction (no 
figure shown). Thus, the Case 4 MIMO process can address the 2x2 loop interaction with a single 
decoupler on the CO2 to PV1  loop.  
 
Case 5:  λ > 1 
When the relative gain is greater than one, the cross-loop interactions act to restrain movement in the 
measured process variables. The third set point steps in Fig. 21.11 for the case where λ = 2.2 illustrate 
that perfect decouplers substantially eliminate both this restraining effect and the level of loop 
interaction. Again, this is not surprising since the relative gain is positive and reasonably close to one. 
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Figure 21.11 - Perfect decouplers can virtually eliminate cross-loop interaction when λ is near 1. 
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Case 6:  λ >> 1 
As relative gain grows larger, the restraining effect on movement in the measured process variables 
due to loop interaction becomes greater. Case 6 in Table 21.3 is interesting because K21 is greater than 
both K11 and K22. That is, controller output CO1 has a greater influence on cross-loop process variable 
PV2 then it does on its own direct process variable PV1. Further, the influence of this disturbance on 
PV2 is large compared to the actions CO2 must take to reject it. Switching loop pairing offers no 
benefit as this makes the relative gain negative. 
 With perfect decouplers as shown in the right set point steps of Fig. 21.12 (the decoupler 
employs the identical models as are used for the process simulation), the system is unstable. This 
cannot be addressed by detuning the PI controller. Even with lower values for controller gain, KC, the 
system is unstable. As we postulate at the end of the distillation case study in the previous chapter, a 
decoupler must have as much influence on its own process variable as does any disturbance. 
 Hence, we detune the decoupler by lowering the cross-loop disturbance gain of the bottom 
loop so that in absolute value, K21 ≤ K22 and K21 ≤ K11.  Repeating the set point steps in the left set 
point steps of Fig. 21.12 reveal a stable and reasonably decoupled system. 
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Figure 21.12 - Perfect decouplers must be detuned to produce a stable system for large λ 
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21.7  Decoupling Cross-Loop τP Effects 
We continue exploring how perfect decouplers can reduce cross-loop interaction and now focus on 
perfect decoupling of time constant effects.  We revisit the "no decoupler" cases explored earlier in 
this chapter as summarized in Table 21.7. Recall that all three cases have a relative gain λ = 1.3, 
which describes a process with some loop interactions but is generally well-behaved. 
 
Base Case 
The base case in Table 21.7 is a system where the direct process and cross-loop time constants have 
equal influence. As shown in the left most set point steps of Fig. 21.13, perfect decouplers virtually 
eliminate cross-loop interaction for this process.  
 
Case 7:  Cross-Loop τP  Large 
Case 7 in Table 21.7, with τ21 = 30 while τ11 = τ22 = τ12 = 10, considers a case where one of the cross-
loop time constants is large relative to the direct process time constants. Here, the disruptive influence 
of CO1 on cross-loop process variable PV2 proceeds relatively slowly. This enables perfect 
decouplers, as shown in the middle set point steps of Fig. 21.13, to effectively eliminate cross-loop 
interaction for this process. 
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Figure 21.13 - Decoupling loop interaction due to time constant effects 
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Case 8:  Cross-Loop τP  Small 
With τ21 = 5 while τ11 = τ22 = τ12 = 10, Case 8 in Table 21.7 considers a process where CO1 is able to 
disrupt cross-loop process variable PV2 faster than CO2 is able to correct the problem. In spite of this 
challenge, perfect decouplers are able to dramatically reduce the loop interaction as shown in the right 
most set point steps of Fig. 21.13. We learn from this study that small cross-loop time constants 
present the greatest decoupling challenge.   
 
21.8  Decoupling Cross-Loop θP Effects 
We finish by exploring how perfect decouplers can reduce cross-loop interaction and decouple dead 
time effects.  We revisit the "no decoupler" cases explored earlier in this chapter as summarized in 
Table 21.9. Recall that all three cases have a relative gain λ = 1.3, which describes a process with 
some loop interactions but is generally well-behaved. 
 
Base Case 
The base case in Table 21.9 is identical to the base case of Table 21.7. That is, the dead times all have 
equal influence. As shown in the left most set point steps of Fig. 21.14, perfect decouplers virtually 
eliminate cross-loop interaction for this process.  
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Figure 21.14 - Decoupling loop interaction due to dead time effects 
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Case 9:  Cross-Loop θP  Large 
Case 9 in Table 21.9, with θ21 = 3 while θ11 = θ22 = θ12 = 1, considers a process where there is a short 
delay before a change in CO1 impacts PV1 and a long delay before it begins disrupting cross-loop 
variable PV2. This additional time enables perfect decouplers, as shown in the middle set point steps 
of Fig. 21.14, to eliminate cross-loop interaction for this process. 
 
 
Case 10:  Cross-Loop θP  Small 
With θ21 = 0.3 while θ11 = θ22 = θ12 = 1, Case 10 considers a process where one of the cross-loop dead 
times is small relative to the direct process dead times. We cannot implement perfect decouplers here 
because the theory requires that we enter a process dead time in the decoupler model that is less than 
or equal to the disturbance dead time. This is not a limitation of Loop Pro. To do otherwise would be 
seeking to compute a corrective control action before the disturbance change first occurs.  
 Suppose for a particular application, you determine that the disturbance dead time is indeed 
shorter than the process dead time. Best practice is to arbitrarily set the process dead time equal to the 
disturbance dead time when entering values into the decoupler input form. An approach that yields 
identical performance is to set the disturbance dead time equal to the process dead time (the approach 
we take here).  Decoupler performance will suffer but at least the calculations will yield control 
actions that make physical sense.  
 Thus, even though the process simulation has the cross loop dead time of θ21 = 0.3, we enter 
θ21 = θ22 = 1.0 in the decoupler input form. The right most set point steps of Fig. 21.14 show that 
while loop interaction is reduced, the comprise we were forced to make with the decoupler model 
parameters prevents complete decoupling. We learn from this study that small cross-loop dead times 
present the greatest decoupling challenge. 
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22.  Model Based Smith Predictor For Processes with Large Dead Time 
 
22.1  A Large Dead Time Impacts Controller Performance 
Dead time is considered large only in comparison to the time constant of a process. As dead time 
grows large relative to the time constant (θP ≥ τP), it becomes increasingly difficult to achieve a tight 
set point tracking performance with traditional PID control. One example of this performance loss is 
that as dead time increases, the rise time and settling time must lengthen to maintain a desired peak 
overshoot ratio. 
 Suppose a process has a dead time equal to the time constant (θP = τP) and the controller 
sample time is ten times per time constant (T = 0.1τP). For such a process, 10 full samples (one dead 
time) must pass after a control action before the sensor detects any impact. And every subsequent 
control action encounters this tremendous delay. The controller tuning must be sluggish enough to 
reflect this dead time. Otherwise, too much corrective action can accumulate in the dead time 
“pipeline,” leading to large oscillations and even a dangerous unstable operation.   
 To visualize this idea, consider the tank temperature control process shown in Fig. 22.1. A 
hot and cold liquid stream combine at the entrance to a pipe, travel its length, and spill into a tank. 
The control objective is to maintain temperature in the tank by adjusting the flow rate of hot liquid 
entering the pipe (this case study is not available in Loop Pro but is illustrative for this discussion).  
 

FC

cold liquid

hot liquid

TC

2. The sensor does not see the result of the control action
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Figure 22.1 – The large dead time from the pipe makes tight temperature control difficult 
 
 If tank temperature is below set point (too cold), the controller opens the hot liquid valve to 
compensate and the temperature of the liquid entering the pipe increases. The temperature sensor in 
the tank does not immediately see the result of this action, however, because the additional hot liquid 
is still a pipe length away.   
 If the controller is tuned for a rapid response (a large KC and small τI), it will open the hot 
liquid valve more and more in an attempt to raise tank temperature. The pipe fills with ever hotter 
liquid until the first hot liquid makes its way down the pipe and finally spills into the tank.  
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 When tank temperature eventually rises to set point, the controller steadies the hot liquid flow 
rate entering the pipe to stop any additional temperature rise. But the pipe is now filled with hot liquid 
and it continues spilling into the tank. As tank temperature rises yet further, the controller begins 
closing the valve to cool the tank. Again, because of the delayed response, the controller will fill the 
pipe with too-cold liquid before the actions are finally revealed in the tank.  
 The dead time from the pipe combined with an overly aggressive controller causes the tank 
temperature to cycle between too-hot and too-cold. One solution is to detune the controller. That is, 
decrease the controller gain and/or increase the reset time to make the action more sluggish.  
 A sluggish controller makes small control actions at a slow pace. This enables the controller 
to literally wait out the delay between action and response. Detuning addresses the problem of over-
correction just described, but sluggish tuning is associated with a poor control performance. 
   
22.2  Predictive Models as Part of the Controller Architecture 
An alternative solution is model predictive control (MPC), which has the potential to markedly 
improve closed loop performance in the presence of large dead time. Model predictive controllers 
incorporate a dynamic process model as part of the architecture of the control algorithm. For success 
in implementation, the model must reasonably describe the controller output to measured process 
variable dynamic behavior. We already have experience developing dynamic process models because 
the FOPDT (first order plus dead time) form used for controller tuning is suitable for MPC 
implementation, though it is the simplest of the models available. 
 The function of the dynamic model is to predict the future value of the measured process 
variable based on the current state of the process and knowledge of recent control actions. A control 
action is “recent” if the dynamic response it caused in the process is still in progress. 
 If the predicted measured process variable does not match a desired set point, this future error 
enables corrective control actions to be taken immediately, and before the predicted problem actually 
occurs. Thus, the model predictive controller exploits process knowledge contained in the dynamic 
model to compute current control actions based on a predicted future. 
 In theory, a perfect model can eliminate the negative influence of dead time on controller 
performance. In the practical world, as we will see later in this chapter, MPC can certainly provide a 
performance benefit in the presence of large dead time. This benefit comes at a price, however. The 
designer must identify an appropriate dynamic model form, fit the model parameters to process data, 
and program the result into the control computer. The model predictions must then be properly 
sequenced with the computations of the feedback loop to create an integrated MPC architecture.  
 
22.3  The Smith Predictor Control Algorithm 
The Smith predictor is the simplest implementation of general MPC theory (a variant of the Smith 
predictor can be created from MPC theory by choosing both the near and far prediction horizon as  
θP/T + 1 samples, a control horizon of one, and a constant set point profile). The Smith predictor 
architecture, illustrated in Fig. 22.2, is comprised of an ideal (or no dead time) process model block 
and a separate dead time model block. The computation proceeds as follows:  
 

 1) The ideal process model receives the current value of the controller output, u(t), and computes 
yideal(t), which is a model prediction of what the measured process variable, y(t), would be if 
there were no dead time in the process (or alternatively, a prediction of what y(t) will be one 
dead time into the future).  
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 2) yideal(t) is then fed into a dead time model where it is stored until one dead time, θP, passes. At the 
instant that the yideal(t) is stored, a previously stored yprocess(t) is released. This yprocess(t) is the 
value of yideal(t) that was computed and stored one dead time ago. Hence, yprocess(t) is a model 
prediction of the current value of y(t).  
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Add Time Delay
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++
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      zero dead time “measurement”
      predicted by the model  

 
 

Figure 22.2 - The Smith predictor model based controller architecture 
 
 The ideal and dead time model predictions are combined with the actual process measurement 
prior to every control action to form the Smith controller error, e*(t), as: 
 
                                         e*(t) = ysetpoint(t) − [ y(t) − yprocess(t) + yideal(t)]                                          (22.1) 
 
If the model exactly describes the dynamic behavior of the actual process, then: 
  
                                                                y(t) −  yprocess (t) = 0                                                          (22.2) 
or 

 

                                               [ y(t) − yprocess(t)] + yideal(t) = yideal(t)                                                 (22.3) 
 

and so for a perfect model, the Smith predictor error, e*(t), going to the controller is: 
 
                                                          e*(t) = ysetpoint (t) − yideal(t)                                                       (22.4) 
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Hence, if the model exactly describes process behavior, then the Smith predicted error going to the 
controller, rather than being the traditional e(t) = ysetpoint(t) − y(t), becomes the difference between the 
set point and a prediction of what the measured process variable would be if there were no dead time 
in the process.  
 
 Of course, the dynamic model will never exactly describe the true behavior of a process and 
the logic presented above does not reflect this. It is safe to assume, however, that the ability of the 
Smith predictor to reduce the influence of dead time on controller performance is directly related to 
how well the model indeed describes the actual process dynamics. It should also be noted that a very 
poor match between the model predictions and the actual process dynamics invites disaster, including 
creating an unstable closed loop system for an otherwise well behaved process. 
 
22.4  Exploring the Smith Predictor Controller 
To isolate and explore the impact of dead time on controller performance and to establish the benefits 
of the Smith predictor control algorithm, we use Loop Pro's Custom Process module. This study 
proceeds as follows: 
 

   - a second order without dead time process is created in Custom Process and a PI controller is 
designed and validated. The control objective is a 10% peak overshoot ratio and complete settling 
of dynamics in one cycle of the measured process variable when the set point is stepped from 
50% up to 55%. 

   - significant dead time is added to the original second order without dead time process and the 
resulting degradation in controller performance is explored.   

   - a Smith predictor is designed and implemented to compensate for the added dead time and to 
restore the original set point tracking performance. 

 
PI Control of a Second Order Without Dead Time Process 
The second order without dead time process is implemented in Custom Process with the parameters: 
 
    Process gain,  KP = 1.2 
    First time constant,  τP1 = 10 min 
    Second time constant,  τP2  = 7 min  
    Process dead time,  θP = 0 min 

 
Thus, the process has a steady state gain of 1.2 (no units specified) and two time constants (which is 
why it is second order) of 10 minutes and 7 minutes. 
 As shown in Fig 22.3, controller tuning is based on a pulse test where the controller output is 
stepped from 50% up to 55% and back again. A Design Tools fit of a FOPDT model to the pulse test 
data is also shown in the figure (a doublet test is normally recommended for controller design so data 
is generated both above and below the design level of operation to average nonlinear effects. Since 
Custom Process simulations are linear, a pulse test provides equally valid data.) 
 The FOPDT model parameters computed by Design Tools and shown at the bottom of the 
Fig. 22.3 are: 
    Process gain,  KP = 1.2 (unitless) 
    Overall time constant,  τP = 13.7 min 
    Apparent dead time,  θP = 3.7 min 
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Figure 22.3 - FOPDT model of second order without dead time pulse test data   
 
It is interesting to note that a FOPDT model fit of data from this second order without dead time 
process yields a rather significant apparent dead time (where “significant” dead time exists only in 
comparison to the time constant of the process). This apparent dead time is the natural result of 
approximating the dynamics of a higher than first order processes with the FOPDT form. 
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Figure 22.4 - IMC tuned PI controller produces the design 10% overshoot,  
a rise time of 15 minutes and complete settling in 50 minute 
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Performance Degrades When Dead Time is Added 
The Custom Process simulation is now modified by adding 5 minutes of dead time to the original 
model. To appreciate the impact of dead time on controller performance, the PI tuning parameters 
used to generate Fig. 22.4 are retained and the same set point step test is performed.  
 As shown in Fig. 22.5, the addition of dead time results in seriously degraded performance. 
The peak overshoot ratio has climbed from 10% up to about 70%, and complete settling of dynamics 
has increased from 50 minutes up to well over 150 minutes with multiple cycles of the measured 
process variable. 
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Figure 22.5 – Using the PI tuning of Fig. 22.4, the added dead time causes  
a 70% overshoot and complete settling in excess of 150 minutes 

 
 One method of achieving the design performance criteria of a 10% peak overshoot ratio and 
complete settling within one cycle of the measured process variable is to detune the controller. Since 
the process has been altered to include significant dead time, the most efficient way to determine the 
more sluggish tuning values is to follow the identical design procedure just detailed.  
 Hence, as shown in Fig. 22.6, a FOPDT model is fit to pulse test data collected form the 
second order plus dead time (SOPDT) process. At the bottom of the Fig. 22.6 are the FOPDT model 
parameters computed by Design Tools: 
 
    Process gain,  KP = 1.2 (unitless) 
    Overall time constant,  τP = 13.7 min 
    Apparent dead time,  θP = 8.7 min 
 
 Using IMC tuning in this study, the closed loop time constant, τC, is computed as the larger of 
0.1τP or 0.8θP, and thus τC = 2.95 minutes. Substituting this τC and the above FOPDT model 
parameters into the IMC correlations yields the PI tuning values: 
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    Controller Gain, KC = 1.7 (unitless) 
    Reset Time, τI =  13.7 min 
 
 The capability of the PI controller in tracking step changes in set point for the second order 
without dead time process is shown in Fig. 22.4. For a set point step from 50% up to 55%, the 
controller achieves the desired peak overshoot ratio of about 10% with a rise time of about 15 minutes 
and complete settling in one cycle of the measured variable in about 50 minutes. This control 
performance becomes the base case for the subsequent investigations. 
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Figure 22.6 - FOPDT model of second order with dead time pulse test data 
 
 
The new PI tuning values computed from the IMC correlations for the SOPDT process are: 
 
    Controller Gain, KC = 0.7 (unitless) 
    Reset Time, τI =  13.7 min 
 
 As shown in Fig. 22.7, this tuning produces the design performance criteria of a 10% 
overshoot ratio and complete settling within one cycle of the measure variable. However, rise time 
has doubled from the base case 15 minutes up to about 30 minutes. Complete settling now occurs in 
80 minutes, a dramatic increase over the 50 minutes of the no dead time base case of Fig. 22.4.  
 
The Smith Predictor Restores Performance 
Loop Pro permits implementation of a PI with Smith predictor controller by selecting that option from 
the list of controllers and entering the PI tuning values and the Smith predictor model values where 
indicated in the controller design form. The model fit shown in Fig. 22.6 from our previous controller 
design provides a FOPDT model that describes the dynamics of the SOPDT process. This will serve 
as our predictive process model.  
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Figure 22.7 - Detuning the controller produces the design 10% overshoot, but rise time has  
doubled to 30 minutes and complete settling now takes 80 minutes 

 
 
 Tuning presents a challenge, however, because there are no correlations readily available for 
PI controllers used in a Smith predictor architecture. Here we get creative by recognizing that the 
Smith predictor theoretically eliminates the impact of dead time on control performance. Thus, we 
will use the standard IMC tuning correlations, but in the calculation we will employ an artificial or 
theoretical minimum value for dead time.  
 Recall that sample time, T, should ideally be less than or equal to 0.1τP. And for commercial 
control equipment, one sample time always passes between a control action and when the controller 
receives the next measurement. Hence, the minimum that dead time can be on a commercial control 
system, in theory anyway, is one sample time. 
 So in the IMC tuning correlation, we will use the process gain and time constant from the 
actual FOPDT fit of the process data as shown in Fig. 22.6, but for dead time in the correlation we 
will use θP = 0.1τP = 1.4 min, or:  
 
    Process gain,  KP = 1.2 (unitless) 
    Overall time constant,  τP = 13.7 min 
    Apparent dead time,  θP = 1.4 min 
 
Using these parameters in the IMC correlation yields the tuning values for the PI with Smith predictor 
architecture: 
 
    Controller Gain, KC = 4.1 (unitless) 
    Reset Time, τI =  13.7 min 
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As shown in Fig. 22.8, the PI with FOPDT Smith predictor produces very close to the design 
performance criteria of a 10% overshoot ratio and complete settling within one cycle of the measure 
variable. Rise time approaches 20 minutes, which equals the base case 15 minutes plus the 5 minutes 
of dead time added to the base case process. Complete settling occurs in 55 minutes and this equals 
our base case settling of 50 minutes plus the 5 minutes of dead time. 
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Figure 22.8 - PI controller with FOPDT Smith predictor produces the design 10% overshoot,  
a rise time of 20 minutes and complete settling in 55 minutes 

 
 Though the design performance criteria are met, one observation is that the controller works 
uncomfortably hard to achieve this success as evidenced by the large swings in the controller output 
signal trace. As we learn in Fig. 22.9, this behavior is the result of using the FOPDT model to predict 
the dynamics of a second order plus dead time process. 
 In Fig. 22.9 we use the original PI controller tuning values from Fig. 22.4, but now the 
identical SOPDT model used to simulate the process in Custom Process is used as the predictive 
process model in the Smith predictor architecture. The potential of the MPC architecture is 
demonstrated in that the exact controller output signal and measured process variable traces evolve 
here as they did in the base case of Fig. 22.4. The only difference is that there is a 5 minute shift in 
the measured process variable in Fig. 22.9 because of the process dead time added to the simulation. 
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Figure 22.9 - PI controller with SOPDT Smith predictor produces the design 10% overshoot,  
a rise time of 20 minutes and complete settling in 55 minutes 
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23.  DMC - Single Loop Dynamic Matrix Control 
 
23.1  Model Predictive Control 
Model predictive control (MPC) refers to a class of control algorithms that have a dynamic model of 
the process programmed into the control architecture. The function of the model is to predict the 
future behavior of the process based upon past controller moves and the current state of the process. 
At each sample time, the next controller move is computed from a comparison of this predicted future 
behavior with the desired set point trajectory.  
 Expanding this explanation, the MPC strategy begins with a performance objective function, 
or mathematical equation that defines "good" control. This objective function typically combines 
controller error and controller effort into a single formulation. If the measured process variable is 
maintained at its set point over the predicted future (controller error is zero), the controller 
performance is certainly good. If the control effort (the size of each control move) is small, then the 
mechanical components of the final control element won't wear excessively and the process will not 
experience unsettling sudden changes. Thus, by finding the mathematical minimum of the objective 
function, control actions of modest size will be computed to drive the future predicted controller error 
to zero. 
 Future set point tracking performance in the objective function is computed using the 
dynamic process model. The model predicts the future of the measured process variable using past 
and future (yet to be computed) controller output moves. The objective function is minimized by 
computing a series of future controller output moves over the control horizon (the distance into the 
future being considered) that balance set point tracking performance with controller effort. Only the 
first of these controller output moves is implemented before repeating the entire procedure at the next 
sample time. 
 Model predictive control is growing in popularity for its reasonably intuitive approach, its 
ability to control processes with complex dynamics such as large dead time, inverse response and 
unstable open loop dynamics, and its convenient handling of multivariable control challenges. MPC 
offers additional benefits because process constraints and variable set point trajectories can be directly 
addressed in the control calculations. Unfortunately, the design of a single loop MPC strategy 
requires specifying at least five adjustable tuning parameters prior to implementation. For 
multivariable implementations, the tuning burden grows substantially.   
 
23.2  Dynamic Matrix Control 
Dynamic matrix control (DMC) is one MPC strategy experiencing rapid growth in the chemical 
process industries. DMC does not compete with classical PID controllers. Rather, it is typically 
implemented in a hierarchy above a set of traditional PID loops. Such an approach is well suited for 
multivariable control, where the actions of x controller outputs each affect y process variables. It also 
permits the flexible handling of constraints. These can be specified explicitly as hard constraints (e.g., 
process limits) or implicitly as soft constraints (e.g., economic objectives). 
 Here we focus on the design and tuning of a single-loop DMC controller to illustrate design 
concepts and provide a handle on the tuning strategy, both of which extend directly to 
implementation of the multivariable case. The tuning strategy for a DMC controller can be reduced to 
a ‘recipe’ as detailed in Table 23.1. After summarizing the theory, the use of this table is 
demonstrated in an example. 
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Figure 23.1 - The moving horizon architecture 
 
 DMC is a ‘moving horizon’ MPC strategy. As shown in Fig. 23.1, moving horizon 
controllers employ a model internal to the controller architecture to predict the future measured 
process variable profile, $( )y n j+  (j = 1,  2, …, P). P is the prediction horizon and represents the 
number of sample times into the future over which DMC predicts the measured process variable. 
 The predicted process variable profile, ˆ( + )y n j , is computed using the recent history of 
controller output moves, ( )u n j∆ −  (j = 1, 2, …, N) and a finite step response process model: 
 

{

-1

1 1

ˆ( )  +  ( )  +   ( ) ( )
j N

ss i i
i i j Prediction

error
Predicted process
variable profile Effect of  current and Effect of  past moves

future moves

y n j y a u n j i a u n j i d n
= = +

+ = ∆ + − ∆ + − +∑ ∑14243
144424443 144424443

           (23.1) 
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In Eq. 23.1, yss is the initial steady state of the measured process variable and ∆u u ui i i= − −1  is the 
change in the controller output at the ith sample time. Also, ai  (i = 1, 2, …, N) are the unit step 
response coefficients as discussed in the next section. N is the model horizon and represents the 
number of past controller output moves used by DMC to predict the future process variable profile. 
 The prediction error in Eq. 23.1, d(n), is the difference between the prediction of the current 
value of the process variable and its actual measured value, or d n y n y n( ) ( ) $( )= − . This prediction 
error is added to the predicted process variable profile, $( )y n j+ , to correct for any unmeasured 
disturbances or inaccuracies due to plant-model mismatch.  
 The predicted process variable profile computed above is subtracted from the set point 
profile, y n jsp( )+ , over the next P sample times, squared, and then summed to yield the sum of the 
squares of the set point tracking error. The DMC objective function, to be minimized at every sample 
time, is then represented as  
 

{ } { }
P M2 2

sp
1 1

ˆ J= y ( ) y( )  + u( 1)
j i

Penalty on controller Set point tracking
 output move sizes         error

Min n j n j n iλ
= =

+ − + ∆ + −∑ ∑
14442444314444244443

                            (23.2) 

 
Here, λ is a positive constant that weighs the controller output move sizes relative to the sum of the 
squares of the set point tracking error. The penalty on the controller output move sizes is introduced 
into the DMC objective function to suppress otherwise aggressive control actions when the control 
horizon, M, is greater than one. 
 Before the optimization problem posed in Eq. 23.2 can be solved, the set point tracking error 
must be expressed in terms of the controller output moves that have already occurred and those to be 
determined, as follows:  
 
 

1

1 1
Effect of current and futurePredicted error based on
  moves to be     past moves, ( +j) 
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                   ( ) ( ) ( ) ( )

sp

jN

sp ss i i
i j i

e n
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−

= + =
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144424443
         (23.3) 

 
 
where j = 1, 2, …, P. Eq. 3 is a linear system of P equations that can be represented in a matrix form, 
assuming that the controller output is held constant beyond the control horizon, M: 
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   (23.4) 

 
or in a compact matrix notation as: 

uAeyysp ∆−=−        ˆ                                                         (23.5) 
 
Here, ysp  is the vector of future set points, $y  is the vector comprising the predicted process variable 

profile, e  is the vector of predicted errors over the next P sampling intervals based on past controller 
output moves, A  is the DMC dynamic matrix, and ∆u is the vector of M controller output moves to 
be determined. 
 With the transformation of the set point tracking error as in Eq. 23.5, the DMC objective 
function can be alternatively written as: 
 

[ ] [ ] [ ] [ ]uuuAeuAe
u

∆∆∆−∆−
∆

λTT +  =J  Min                                    (23.6) 

 
In the unconstrained case, Eq. 23.6 represents a least squares optimization problem that has a closed 
form solution representing the DMC control law (e.g., García and Morshedi, 1986): 
 

T 1 T = ( + )λ −∆ Iu A A A e                                                            (23.7) 
 
Adding constraints to this classical formulation (Eq. 23.6) produces the Quadratic Dynamic Matrix 
Control (QDMC) (e.g., García and Morshedi, 1986) algorithm.  The constraints considered in this 
work include: 

 
maxmin ˆˆˆ yyy ≤≤                 (23.8a) 

maxmin uuu ∆≤∆≤∆        (23.8b) 

maxmin uuu ≤≤                 (23.8c) 
 
 
23.3  The DMC Process Model 
DMC requires that the dynamic process model be expressed both as the finite step response model 
(Eq. 23.1) and the DMC dynamic matrix (Eq. 23.4).  Both forms rely on the unit step response 
coefficients, ai (i = 1, 2, …, N), generated from the actual process. 

Step response data is generated by introducing a positive step in the controller output with the 
process at steady state and the controller in manual mode. From the instant the step change is made, 
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the process variable response is recorded as it evolves and settles at a new steady state. For a step of 
arbitrary size, the response data is normalized by dividing through by the size of the controller output 
step to yield the unit step response. For processes with a modest steady-state gain, a unit step in the 
controller output can be used directly to obtain the unit step response. In either case, it is necessary to 
make the controller output step large enough such that noise in the process variable measurement 
does not mask the true process behavior.  
 Discrete points at every sample time along the unit step response are collected (Fig. 23.2) to 
yield the unit step response coefficients: 
 

1 2 3Unit step response coefficients = [ ,  ,  , ,  ]Na a a aL                               (23.9) 
 
The unit step response coefficients in Eq. 23.9 are used in Eq. 23.1 to compute the predicted process 
variable profile at every sample time. Also, the first P of the N coefficients are cast in a matrix form 
as shown in Eq. 23.4 to obtain the DMC dynamic matrix. This matrix can then be used directly in the 
DMC control law (Eq. 23.7). Notice, however, that both the sample time, T, and the prediction 
horizon, P, have to be known before the finite step response model or the DMC dynamic matrix can 
be designed. 
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Figure 23.2 - Generating the unit step response coefficients 
 
23.4  Tuning DMC 
Tuning DMC, even for a single-input single-output (SISO) process, is challenging because of the 
number of adjustable parameters that affect closed loop performance. As listed in Appendix C, these 
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include: a finite prediction horizon, P; a model horizon, N; a control horizon, M; a move suppression 
coefficient, λ; and a sample time, T. 
 Step 1 involves fitting a first order plus dead time (FOPDT) model to actual controller output 
to measured process variable data. Reasonable estimates of the FOPDT model parameters, i.e., the 
steady state gain, Kp, overall time constant, τp, and effective dead time, θp, are essential to the success 
of this tuning strategy. It is important to stress that this model is used in the tuning strategy only and 
that Eq. 23.1 through 23.7 used in the implementation of DMC are formulated from the actual process 
data obtained as described above (Fig. 23.2 and Eq. 23.9). 
 Step 2 involves the selection of an appropriate sample time, T. The estimated FOPDT model 
parameters provide a convenient way to select T. If the designer does not have complete freedom to 
select sample time equal to the value computed, then it should be picked as close as possible to this 
recommended value.  
 Step 3 computes a model horizon, N, and a prediction horizon, P, from τp, θp and T. Note that 
both N and P cannot be selected independent of the sample time, T. Also, it is imperative that N be 
equal to the open loop process settling time in samples to avoid truncation error in the predicted 
process variable profile.  
 Step 4 requires the specification of a control horizon, M. Recommended values of M are such 
that M × T is larger than the time required for the slowest open loop response to reach 60% of the 
steady state. A convenient way to select M is to compute an integer value using τp and T as shown in 
Appendix C. Selecting M > 1 can be very useful to the practitioner since this provides advance 
knowledge of the impending controller output moves.  
 Step 5 involves computation of a move suppression coefficient, λ.  With M = 1, the need for a 
move suppression is eliminated and λ is set equal to zero. However, if M > 1, a positive move 
suppression coefficient of appropriate magnitude is essential to suppress otherwise aggressive control 
action. 
 As with all controllers, it may be necessary to perform final on-line tuning. The best single 
tuning parameter for performance adjustment is the move suppression coefficient, λ. Increasing λ 
produces smaller controller output move sizes and slower process variable response. 
 
23.5  Example Implementation 
The design and tuning of DMC are demonstrated on a perfect DMC controller.  A perfect DMC 
controller employs the identical models in the DMC step response model as is used for the process 
simulation.  Be aware that in real-world applications, most DMC step response models will differ 
from the true process behavior.  Hence, the DMC controller capabilities shown here should be 
considered as the best possible performance. 

The ideal process simulation is a second order plus dead time model (SOPDT) overdamped 
linear model of the form: 
 

   Process Gain, KP =      2.0 
 

    First Time Constant, τP1 =      20.0 time units 
 

   Second Time Constant, τP2 =      10.0 time units 
 

  Dead Time, θP =      10.0 time units   
 
 The first step in tuning is to fit a FOPDT model to process data. For this example, Design 
Tools yields the model parameters for the ideal process as Kp = 2.0 PV units/CO unit, τp = 24.1 time 
units, θp = 13.8 time units. Based on the criteria presented in Step 2, a sample time of 7.0 time units is 
selected. For the FOPDT parameters estimated and the value of T selected above, the prediction 
horizon, P, and the model horizon, N, are computed in Step 3 to be 19, the open loop settling time of 
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the ideal process in samples. Next, a control horizon, M, of 5 is computed in Step 4. Finally, in Step 
5, an appropriate move suppression coefficient of 23.9 is computed for the ideal process. 
 With the tuning parameters selected, the unit step response coefficients are determined for the 
ideal process for a sample time of 7.0 time units. In the initialization of the DMC controller, the step 
response coefficients are generated for you based on the values of T, P and N.  The model used to 
generate the step response coefficients is entered as a transfer function on the design menu.  The user 
wants to use the transfer function that best represents the process. In this case, the transfer function 
will be a SOPDT overdamped model.  The model parameters listed above are entered into the design 
menu. With the design complete, DMC is implemented and its performance tested for the ideal 
process. 
 The closed loop performance achieved for the ideal process, with DMC tuned using the 
tuning strategy in the appendix, is shown in Fig. 23.3. The top half of this plot shows the process 
variable response for a step change in set point. The lower half of the plot shows the controller output 
moves made by DMC to achieve the desired set point tracking. 
 Desirable closed loop performance is defined as the process variable response to a step 
change in set point exhibiting a modest peak overshoot (say, less than 10%). Also, the corresponding 
controller output move sizes should not exceed 2 to 3 times the final change in controller output. As 
shown in Fig. 23.3, such a performance is achieved.  
 

 
 

Figure 23. 3 - DMC performance for the ideal process 
 
Effect of Tuning Parameters on DMC Performance 
The significance of the tuning strategy can be illustrated in a sensitivity study where the effect of each 
tuning parameter on closed loop performance is individually explored. For comparison, the DMC 
tuning and design demonstrated in Fig. 23.3 is labeled as the ‘base case’ in Figures 23.4 through 
23.10.  

From left to right, Fig. 23.4 shows the impact of reducing the model horizon, N, from 38 to 
19 (base case) and then to 10 and finally to 5. With the reduced value of N, the now truncated step 
response model in DMC is able to predict the effect of controller output moves for only 5 sample 
times (plus the dead time) after a set point change. Beyond 5 sample times, even though the past 
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controller output moves continue to impact the process variable, their effect is not realized in what 
amounts to an incorrect computation from the truncated model profile. As in this case, such truncation 
generally results in unpredictable and undesirable controller performance. 
 From left to right, Fig. 23.5 shows the impact of reducing the prediction horizon, P, from 19 
to 8 and finally to 3. For small values of P the process variable response shows a longer rise time. 
Note that this change occurs abruptly as the value of P becomes very small rather than occurring 
gradually as the value of P decreases.  This performance change results because: i) the controller 
output moves computed by DMC seek to eliminate the predicted error over a fewer number of future 
sampling intervals, ii) the inability of DMC with a small P to predict the process behavior far enough 
ahead to realize that the past moves will bring the process variable to the new set point and beyond, 
and iii) the presence of a rather large move suppression coefficient, appropriate for the base case (P = 
19), but resulting in very small moves for the case with the reduced prediction horizon (P = 3). 
 
 

 
 

Figure 23.4 – Effect of Varying Only the Model Horizon, N, from the Base Case 
 

 As stated previously, the appropriate value for the move suppression coefficient is related to 
the prediction horizon, P.  From left to right, Fig. 23.6 shows the impact of reducing the move 
suppression coefficient from 192 to 23.9 (base case) and then to 3 and finally to 0.375 for constant 
values of sample time (T = 7.0 time units), model horizon (N = 19), prediction horizon (P = 19), and 
control horizon (M = 5).  As shown below, increasing the move suppression coefficient for a constant 
prediction horizon can dramatically increase the rise time, resulting in a slower response and poor 
control.  This illustrates the impact of the move suppression coefficient upon the nature of the 
response. 
 

 

N = 38 N = 19 
(base case) 

N = 10 N = 5 
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Figure 23.5 – Effect of Varying Only the Prediction Horizon, P, from the Base Case 

 
 
 As the move suppression coefficient decreases, the controller output moves become 
increasingly aggressive resulting in a process variable response that oscillates with some overshoot. 
Decreasing the move suppression coefficient reduces the penalty on the move sizes made by DMC 
resulting in more aggressive moves. Mathematically, this can also be explained as the ineffectiveness 
of a small move suppression coefficient in conditioning the inherently ill-conditioned system matrix, 
A AT , in the DMC control law (Eq. 23.7). 

 The model and prediction horizons, N and P, respectively, should have the same value.  
Figures 23.4 through 23.5 demonstrate the individual effects of changing N and P away from one 
another, but the effect of changing both parameters together is also very interesting.  From left to 
right, Fig. 23.7 illustrates the impact of reducing both N and P from 38 to 19 (base case) to 10 to 5 
and finally to 3 for constant values of sample time (T = 7.0 time units), control horizon (M = 5), and 
move suppression coefficient (λ = 23.9).  Notice how the response becomes more oscillatory as N and 
P decrease until becoming overdamped and sluggish once P equals 3.  Therefore, the coupled impact 
of a low prediction horizon (P = 3) and a large move suppression coefficient (λ = 23.9) overtakes the 
gradual effect of decreasing both the model and prediction horizons. 
 From left to right, Fig. 23.8 illustrates the effect of reducing the control horizon, M, from 10 
to 5 (base case) to 3 and finally to 1 with the sample time (T = 7.0 time units), model and prediction 
horizons (N = P = 19), and move suppression coefficient (λ = 23.9) held constant. The difference in 
performance between the base case and the other cases is rather insignificant, especially in the 
presence of a significant move suppression coefficient.  
 
 

P = 19 
(base Case) 

P = 8 P = 3 
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Figure 23.6 – Effect of Varying Only the Move Suppression Coefficient, λ, from the Base Case 
 

 

 
Figure 23.7 – Effect of Varying the Model and Prediction Horizons Together from the Base Case 

 
 For the base case with its large control horizon (M = 5), the faster process variable response, 
slight increase in overshoot and increased activity of controller output moves is due to the added 
degrees of freedom from the extra moves computed at every sample time. With a larger number of 
moves computed at every sampling interval, DMC can afford to make more aggressive first moves 
that are compensated for by the extra moves available. Since only the first move is actually 
implemented while the others are discarded for a new set of M moves computed at the subsequent 
sample time, the result is a more aggressive response. 
 

N = 38 
P = 38 

N = 19 
P = 19 

(base case) 
N = 10 
P = 10 

N = 5 
P = 5 

N = 3 
P = 3 

λ = 192 λ = 23.9 
(base case) 

λ = 3 λ = 0.375 
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Figure 23.8 – Effect of Varying Only the Control Horizon, M, from the Base Case 

 
 From left to right, Fig. 23.9 demonstrates the impact of changing the sample time, T, from 14 
to 7 (base case) to 3.5 to 1.75 time units.  Note that these changes occurred without changing any of 
the other DMC parameters from their base case values (as calculated based for T = 7 time units).  
Notice how the response grows more oscillatory as T decreases. 
 Similarly, Fig. 23.10 also demonstrates the impact of changing T from 14 to 7 (base case) to 
3.5 to 1.75 time units.   However, note that the other DMC tuning parameters were changed along 
with the sample time, using the applicable tuning rules found in the appendix.  In Table 23.1 below, 
you will find the DMC tuning parameters used for each step, from left to right, in Fig. 23.10. 
 

Example T (time units) N P M λ 
(a) 14 9 9 2 5.66 
(b) 7 19 19 5 23.9 
(c) 3.5 39 39 11 97.34 
(d) 1.75 78 78 22 366.7 

 
Table 23.1 – Changes in DMC Tuning Parameters with Sample Time, T 

 
It is important to mention here that when the sample time is altered, the unit step response 

model internal to the DMC architecture should also be appropriately updated to eliminate plant-model 
mismatch.  Loop Pro calculates the step response model from a linear model of the process and T, 
both input by the user.  The linear model used does not change with T, but the step response model 
computed from it by Loop Pro does.  However, the step response model should change whenever T 
changes if the step response model is input directly into the controller without such a calculation.  
Specifically, the updated model should be formed from unit step response coefficients, ai, collected at 
the new sampling interval, T.  

 

M = 10 M = 5 
(base case) 

M = 3 M = 1 
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Figure 23.9 – Effect of Varying Only the Sample Time, T, from the Base Case 
 
 

 
 

Figure 23.10 – Effect of Varying the DMC Tuning Parameters with T from the Base Case 
 
Notice how the response obtained in Fig. 23.9 shows a highly erratic set of controller output 

moves accompanied with an irregular, underdamped process variable response while the responses in 
Fig. 23.10 are quite similar. The cause for this difference in behavior can be noticed from the tuning 
strategy found in Appendix C, where the computation of all of the tuning parameters depends on the 
choice of the sample time. Hence, changing the sample time without updating all of the other DMC 
tuning parameters adversely affects closed loop performance.  Figures 23.9 and 23.10 above 
demonstrate the importance of changing N, P, M, and λ along with any changes in the sample time, T. 

(a)    T = 14 (b)  T = 7 (base case) (c)    T = 3.5 (d)    T = 1.75 

T = 14 T = 7 
(base case) 

T = 3.5 T = 1.75 
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Effect of Constraints on DMC Performance 
The significance of constraints can be illustrated using the following example.  For both step tests 
shown below, the tuning parameters are given as T = 7.0 time units, P = N = 19, M = 5, and λ = 23.9, 
and the constraints are: 

6045 ≤≤ ŷ  
0101 .. ≤∆≤− u  
552050 .. ≤≤ u  

 
The first plot in Fig. 23.11 shows the performance achieved by DMC tuned for the case when 

T = 7, P = N = 19, M = 5, and λ = 23.9 without the above constraints. The second plot represents the 
performance when constraints listed above are included in the controller design.  Notice that when 
constraints are included the move sizes computed by DMC for the controller output are not greater 
than 0.5, and the controller output is constrained at values of 50% and 52.5%.  When constraints are 
included, the process variable response is significantly slower than it was without constraints.  
 

 
 

Figure 23.11 – Effect of Constraints on the Base Case 
 
23.6  Chapter Nomenclature 

ai  = ith unit step response coefficient 
A   = dynamic matrix 
d  = prediction error 
e  = predicted error 
e   = vector of predicted errors 
I  = index 
I  = identity matrix 
j  = index of sampling intervals 
k  = discrete dead time 
Kp  = process gain 
M  = control horizon (number of controller output moves) 
n  = current sampling interval 

Base Case (Without Constraints) Base Case (With Constraints) 
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N  = model horizon (process settling time in samples) 
P  = prediction horizon 
T  = sampling interval 
u  = controller output 
y  = process variable 
yss  = initial steady state of process variable 
ŷ   = predicted process variable 

ysp  = process variable set point 
 

Greek Symbols 
∆ui  = change in controller output at the ith sampling interval 
θp  = effective dead time of process 
λ  = move suppression coefficient (controller output weight) 
τp  = overall process time constant 
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23.7  Tuning Strategy for Single Loop DMC 
 
1. Approximate the manipulated-to-measured-process-variable dynamics with a first order plus dead 

time (FOPDT) model: 
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2. Select the sampling interval as close as possible to: 

 
p   T τ0.1=     or    p   T θ0.5=      whichever is larger 

 
 
3. Compute the prediction horizon, P,  and the model horizon, N, as the process settling time in 

samples (rounded to the next integer): 
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4. Select the control horizon, M, as the time in samples required for the open loop response to reach 

60% of the steady state: 
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5. Compute the move suppression coefficient: 
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6. Implement DMC using the traditional step response matrix of the actual process and the above 

parameters. 
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Appendix A: Derivation of IMC Tuning Correlations 
 
A.1  Self Regulating Processes 
For a general discussion of the derivation methodology and the details of the PI tuning correlation 
derivation, please see  Chap. 17, “Deriving PID Controller Tuning Correlations.” 
 
A.1.a  Ideal PID Control 
Start with the general FOPDT process model: 
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Substitute the 1/1 Padé approximation for Pse θ− : 
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Factor * ( )PG s into invertible terms, * ( )PG s− , and noninvertible terms, * ( )PG s+ . Recall that an invertible 
term will not yield positive poles (positive roots of the denominator of the transfer function indicating 
unstable behavior) when taken in the reciprocal: 
 
 

 * * *( ) ( ) ( )P P PG s G s G s+ −=  
 

so ( )* ( ) 1 0.5P PG s sθ+ = −  
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Now express the IMC controller, * ( )CG s , in terms of * ( )PG s−  and a first-order filter term, F(s): 
 

 *
*
1( ) ( )

( )C
P

G s F s
G s−

=  

 
The filter term can be expressed in terms of a closed-loop time constant, Cτ : 
 

 1( )
1C

F s
sτ

=
+

 

 

Substitute F(s) and * ( )PG s−  to express the IMC controller as: 
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Relate this IMC controller, * ( )CG s , to a classical feedback controller, ( )CG s : 
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Substitute the above equations for * ( )CG s  and * ( )PG s  and simplify: 
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Factor this into a form we can compare with the ideal PID controller form: 
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Compare this to the classical feedback form for an ideal PID controller: 
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we obtain the following controller tuning correlations: 
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A.1.b  Interacting PID Control 
Start with the general FOPDT process model: 
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Substitute the 1/1 Padé approximation for Pse θ− : 
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Factor * ( )PG s into invertible terms, * ( )PG s− , and noninvertible terms, * ( )PG s+ . Recall that an invertible 
term will not yield positive poles (positive roots of the denominator of the transfer function indicating 
unstable behavior) when taken in the reciprocal: 
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Now express the IMC controller, * ( )CG s , in terms of * ( )PG s−  and a first-order filter term, F(s): 
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The filter term can be expressed in terms of a closed-loop time constant, Cτ : 
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Substitute F(s) and * ( )PG s− to express the IMC controller as: 
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Relate this IMC controller, * ( )CG s , to the classical feedback controller, ( )CG s : 
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Substitute the above equations for * ( )CG s  and * ( )PG s  and simplify: 
 

 

( )( )
( )

( )( )

1 1 0.5
1

( )
1 1 0.5

1

P P

P C
C

P P

s s
K s

G s
s s

τ θ
τ

τ θ

+ +
+

=
+ +

−
PK ( )1

P

C

K
sτ

⎛ ⎞
⎜ ⎟
⎜ ⎟+
⎝ ⎠

( )
( )( )

1 0.5

1 1 0.5
P

P P

s

s s

θ

τ θ

−

+ +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

 

( )( )
( )

( )
( )

1 1 0.5
1

           
1 0.5

1
1

P P

P C

P

C

s s
K s

s
s

τ θ
τ

θ
τ

+ +
+

=
−

−
+

 

 

 
( )( )

( )
1 1 0.5

           
1 1 0.5

P P

P C P

s s
K s s

τ θ
τ θ

+ +
=

+ − +
 

 

 
( )( )

( )
1 1 0.5

           
0.5

P P

P C P

s s
K s s
τ θ

τ θ
+ +

=
+

 

 

 
( )( )

( )
1 1 0.5

           
0.5

P P

P C P

s s
K s

τ θ
τ θ

+ +
=

+
 

 
Factor this into a form we can compare with the interacting PID form: 
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( ) ( )11 0.5 1

0.5
P

C P
P C P P

G s
K s

τ θ
τ θ τ

⎛ ⎞
= + +⎜ ⎟+ ⎝ ⎠

 

 
Compare this to the classical feedback form for an interacting PID controller, 
 

 ( )PID Interact
1( ) 1 1C C D
I

G s K s
s

τ
τ

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
 

 
we obtain the following controller tuning correlations: 
 
 

( )0.5
P

C
P C P

K
K

τ
τ θ

=
+

,  I Pτ τ=  , and  0.5D Pτ θ=  

 
 
A.1.c  Ideal PID with Filter Control 
Start with the general FOPDT process model: 
 

 * ( )
1

Ps
P

P
P

K eG s
s

θ

τ

−
=

+
 

 

Factor * ( )PG s into invertible terms, * ( )PG s− , and noninvertible terms, * ( )PG s+ . Recall that an invertible 
term will not yield positive poles (positive roots of the denominator of the transfer function indicating 
unstable behavior) when taken in the reciprocal: 
 
 * * *( ) ( ) ( )P P PG s G s G s+ −=  
 
 

so * ( ) Ps
PG s e θ−

+ =  
 

and * ( )
1

P
P

P

KG s
sτ− =

+
 

 
Express the IMC controller model, * ( )CG s , in terms of * ( )PG s−  and a first-order filter term, F(s): 
 

 *
*
1( ) ( )

( )C
P

G s F s
G s−

=  

 
The filter term can be expressed in terms of a closed-loop time constant, Cτ : 
 

 1( )
1C

F s
sτ

=
+

 

 

Substitute F(s) and * ( )PG s− to express the IMC controller as: 
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( )

* 1 11( )
1 1

P P
C

P C P C

s sG s
K s K s

τ τ
τ τ

⎛ ⎞⎛ ⎞+ +
= =⎜ ⎟⎜ ⎟ + +⎝ ⎠⎝ ⎠

 

 
Relate this IMC controller, * ( )CG s , to a classical feedback controller, ( )CG s : 
 

 
*

* *
( )( )

1 ( ) ( )
C

C
P C

G sG s
G s G s

=
−

 

 

Substitute the above equations for * ( )CG s and * ( )PG s and simplify: 
 

 

( )
( )

( )
( )

( )

1
1

( )
1

1
1 1

P

P

P C
C s

PP

P P C

s
K s

G s
sK e

s K s

θ

τ
τ

τ
τ τ

−

+
+

=
⎛ ⎞⎛ ⎞+

− ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠

 

 

 

( )
( )

( )

1
1

           
1

1

P

P

P C
s

C

s
K s

e
s

θ

τ
τ

τ

−

+
+

=
−

+

 

 

 
( )

1           
1 P

P
s

P C

s
K s e θ

τ

τ −

+
=

+ −
 

 

Substitute the 1/1 Padé approximation for Pse θ− : 
 

 1 0.5
1 0.5

Ps P

P

se
s

θ θ
θ

− −
≈

+
 

 

so 1( )
1 0.51
1 0.5

P
C

P
P C

P

sG s
sK s
s

τ
θτ
θ

+
=

⎛ ⎞−
+ −⎜ ⎟+⎝ ⎠

 

 

 
( )( )

( )2

1 1 0.5
           

0.5 1 0.5 1 0.5
P P

P C P C P P

s s

K s s s s

τ θ

τ θ τ θ θ

+ +
=

+ + + − +
 

 

 
( )( )

( )( )2

1 1 0.5
           

0.5
P P

P C P C C P

s s

K s s s

τ θ

τ θ τ τ θ

+ +
=

+ + +
 

 
Factor into a form we can compare to the ideal PID with filter form: 
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( )

( ) ( )

21 0.5 0.5
( )

1
2

P P P P
C

C P
P C P

C P

s s s
G s

K s s

θ τ θ τ

τ θτ θ
τ θ

+ + +
=

⎛ ⎞
+ +⎜ ⎟⎜ ⎟+⎝ ⎠

 

 

 
( )

( ) ( )

20.5 1 0.5
           

1
2

P P P P

C P
P C P

C P

s s

K s s

τ θ θ τ

τ θτ θ
τ θ

⎡ ⎤+ + +⎣ ⎦=
⎛ ⎞

+ +⎜ ⎟⎜ ⎟+⎝ ⎠

 

 

 
( )

( ) ( ) ( )
( )

0.5 1 1( ) 1
0.5 2 0.5

1
2

P P P P
C

P C P P P P P C P

C P

G s s
K s

s

τ θ τ θ
τ θ τ θ τ θ τ θ

τ θ

⎛ ⎞+
= + +⎜ ⎟⎜ ⎟+ + + ⎛ ⎞⎝ ⎠ +⎜ ⎟⎜ ⎟+⎝ ⎠

 

 
Compare this to the classical feedback form for an PID with filter controller: 
 

 PID Ideal, Filter
1 1( ) 1

1C C D
I D

G s K s
s s

τ
τ ατ

⎛ ⎞⎛ ⎞
= + +⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

 

 
we obtain the following controller tuning correlations: 
 
 

( )
( )

0.5P P
C

P C P
K

K
τ θ

τ θ
+

=
+

  , 0.5I P Pτ τ θ= +  , 
( )2 0.5

P P
D

P P

τ θτ
τ θ

=
+

 , and  
( )

( )
0.5C P P

P C P

τ τ θ
α

τ τ θ
+

=
+

 

 
 
 
A.1.d  Interacting PID with Filter Control 
Start with the general FOPDT process model: 
 

 * ( )
1

Ps
P

P
P

K eG s
s

θ

τ

−
=

+
 

 

Factor * ( )PG s into invertible terms, * ( )PG s− , and noninvertible terms, * ( )PG s+ . Recall that an invertible 
term will not yield positive poles (positive roots of the denominator of the transfer function indicating 
unstable behavior) when taken in the reciprocal: 
 
 * * *( ) ( ) ( )P P PG s G s G s+ −=  
 

so * ( ) Ps
PG s e θ−

+ =  
 

and * ( )
1

P
P

P

KG s
sτ− =

+
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Now express the IMC controller, * ( )CG s , in terms of * ( )PG s−  and a first-order filter term, F(s): 
 

 *
*
1( ) ( )

( )C
P

G s F s
G s−

=  

 
The filter term can be expressed in terms of a closed-loop time constant, Cτ : 

 1( )
1C

F s
sτ

=
+

 

 
Substitute F(s) and * ( )PG s− to express the controller model as: 
 

 
( )

* 1 11( )
1 1

P P
C

P C P C

s sG s
K s K s

τ τ
τ τ

⎛ ⎞⎛ ⎞+ +
= =⎜ ⎟⎜ ⎟ + +⎝ ⎠⎝ ⎠

 

 

Relate this IMC controller, * ( )CG s , to the classical feedback controller, ( )CG s : 
 

 
*

* *
( )( )

1 ( ) ( )
C

C
P C

G sG s
G s G s

=
−

 

 

Substitute equations for * ( )CG s  and * ( )PG s  and simplify: 
 

 

( )
( )

( )
( )

( )

1
1

( )
1

1
1 1

P

P

P C
C s

PP

P P C

s
K s

G s
sK e

s K s

θ

τ
τ

τ
τ τ

−

+
+

=
⎛ ⎞⎛ ⎞+

− ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠

 

 
 

 

( )
( )

( )

1
1

           
1

1

P

P

P C
s

C

s
K s

e
s

θ

τ
τ

τ

−

+
+

=
−

+

 

 

 
( )

1           
1 P

P
s

P C

s

K s e θ

τ

τ −

+
=

+ −
 

 

Substitute the 1/1 Padé approximation for Pse θ− : 
 

 1 0.5
1 0.5

Ps P

P

se
s

θ θ
θ

− −
≈

+
 

 



 

271 
 

Practical Process Control® by Douglas J. Cooper 
Copyright © 2005 by Control Station, Inc. 

All Rights Reserved 

so 1( )
1 0.51
1 0.5

P
C

P
P C

P

sG s
sK s
s

τ
θτ
θ

+
=

⎛ ⎞−
+ −⎜ ⎟+⎝ ⎠

 

 

 
( )( )

( )2

1 1 0.5
           

0.5 1 0.5 1 0.5
P P

P C P C P P

s s

K s s s s

τ θ

τ θ τ θ θ

+ +
=

+ + + − +
 

 

 
( )( )

( )( )2

1 1 0.5
           

0.5
P P

P C P C C P

s s

K s s s

τ θ

τ θ τ τ θ

+ +
=

+ + +
 

 
Now factor this in such a way that we can compare it to the interacting PID with filter form: 
 

 
( )( )

( ) ( )

1 1 0.5
( )

1
2

P P
C

C P
P C P

C P

s s
G s

K s s

τ θ

τ θτ θ
τ θ

+ +
=

⎛ ⎞
+ +⎜ ⎟⎜ ⎟+⎝ ⎠

 

 

 
( )

( ) ( )

11 1 0.5
           

1
2

P P
P

C P
P C P

C P

s
s

K s

τ θ
τ

τ θτ θ
τ θ

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠=
⎛ ⎞

+ +⎜ ⎟⎜ ⎟+⎝ ⎠

 

 

 
( )

( )

0.5 11           1
1

2

P P

C PP C P P

C P

s
K s s

τ θ
τ θτ θ τ
τ θ

⎛ ⎞
⎜ ⎟⎛ ⎞ +⎜ ⎟= +⎜ ⎟⎜ ⎟+ ⎝ ⎠ +⎜ ⎟+⎝ ⎠

 

 
Comparing this with the classical feedback model for interacting PID with filter control, 
 

 PID Interact, Filter
11( ) 1
1

D
C C

I D

sG s K
s s

τ
τ ατ

⎛ ⎞⎛ ⎞+
= +⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

 

 
we obtain the following controller tuning parameters: 
 
 

( )
P

C
P C P

K
K

τ
τ θ

=
+

 ,  I Pτ τ=  ,  0.5D Pτ θ=  , and 
( )

C

C P

τ
α

τ θ
=

+
 

 
 
Note: The derivation of PI tuning correlations for self-regulating processes can be found in Chap 17. 
 
 
 



 

272 
 

Practical Process Control® by Douglas J. Cooper 
Copyright © 2005 by Control Station, Inc. 

All Rights Reserved 

A.2  Non-Self Regulating Processes 
 
A.2.a  Ideal PID Control 
Start with the general FOPDT process model for integrating processes: 
 

 
*

* ( )
Ps

P
P

K eG s
s

θ−
=  

 
Substitute the 1/1 Padé approximation for Pse θ− : 
 

 1 0.5
1 0.5

Ps P

P

se
s

θ θ
θ

− −
≈

+
 

 

so 
( )

( )
*

* 1 0.5
( )

1 0.5
P P

P
P

K s
G s

s s
θ

θ
−

=
+

 

 

Factor * ( )PG s into invertible terms, * ( )PG s− , and noninvertible terms, * ( )PG s+ . Recall that an invertible 
term will not yield positive poles (positive roots of the denominator of the transfer function indicating 
unstable behavior) when taken in the reciprocal: 
 

 * * *( ) ( ) ( )P P PG s G s G s+ −=  
 
 

so * ( ) 1 0.5P PG s sθ+ = −  
 

and 
( )

*
* ( )

1 0.5
P

P
P

KG s
s θ− =

+
 

 

Now express the IMC controller, * ( )CG s , in terms of the invertible terms, * ( )PG s− , and a first-order 
filter term, F(s): 
 

 *
*
1( ) ( )

( )C
P

G s F s
G s−

=  

 
The filter term can be expressed in terms of a closed-loop time constant, Cτ , and the noninvertible 

process model, * ( )PG s+ , as: 
 

 
( )

( )

* '

2

2 (0) 1
( )

1

C P

C

G s
F s

s

τ

τ

+− +
=

+
 

 

and since  
( )*

* ' (0) (0) 0.5
P

P P

d G
G

ds
θ

+
+ = = −  
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then 
( )

( )2
2 0.5 1

( )
1

C P

C

s
F s

s

τ θ

τ

+ +
=

+
 

 

Substitute F(s) and * ( )PG s− to express the IMC controller as: 
 

 
[ ] ( )

( )
*

2*

1 0.5 1 0.5 2
( )

1
P P C

C
P C

s s s
G s

K s

θ θ τ

τ

⎡ ⎤+ + +⎣ ⎦=
+

 

 

Relate this IMC controller, * ( )CG s , to a classical feedback controller, ( )CG s : 
 

 
*

* *
( )( )

1 ( ) ( )
C

C
P C

G sG s
G s G s

=
−

 

 

Substitute the above equations for * ( )CG s and * ( )PG s : 
 

 
[ ] ( )

( ) ( ) ( )( )2*

1 0.5 1 0.5 2
( )

1 1 0.5 1 0.5 2

P P C
C

P C P P C

s s s
G s

K s s s

θ θ τ

τ θ θ τ

⎡ ⎤+ + +⎣ ⎦=
⎡ ⎤+ − − + +⎢ ⎥⎣ ⎦

 

 
Factor this into a form we can compare with the Ideal PID controller form: 
 

 
[ ] ( )

( )* 2 2 2 2 2

1 0.5 1 0.5 2
( )

1 2 1 0.5 2 0.5 0.25

P P C
C

P C C P C P P P C

s s s
G s

K s s s s s s s

θ θ τ

τ τ θ τ θ θ θ τ

⎡ ⎤+ + +⎣ ⎦=
⎡ ⎤+ + − + + − − −⎣ ⎦

 

 

 
( )

( )

2 2 2

2* 2

0.5 1 0.25 0.5 2
           

0.5

P P P C P C

P C P

s s s s s s

K s

θ θ θ τ θ τ

τ θ

+ + + + +
=

⎡ ⎤+⎢ ⎥⎣ ⎦

 

 

 
( ) ( )

( )

2 2

2* 2

1 2 0.25
           

0.5

C P C P P

P C P

s s s

K s

τ θ τ θ θ

τ θ

⎡ ⎤+ + + +
⎣ ⎦=

⎡ ⎤+⎢ ⎥⎣ ⎦

 

 

 
( )

( ) ( )2 2

* 2

0.2521 1 1           
0.5

C P PC P

P C P

ss
s s sK

τ θ θτ θ

τ θ

⎡ ⎤⎡ ⎤ ++⎢ ⎥⎢ ⎥= + +
⎢ ⎥⎢ ⎥+⎣ ⎦ ⎢ ⎥⎣ ⎦

 

 

 
( ) ( )

( )
( )

2

* 2

0.2521 1           1
2 20.5

C P PC P

C P C PP C P

s
sK

τ θ θτ θ
τ θ τ θτ θ

⎡ ⎤⎡ ⎤ ++ ⎢ ⎥⎢ ⎥= + +
⎢ ⎥+ +⎢ ⎥+⎣ ⎦ ⎢ ⎥⎣ ⎦

 

 
Compare this to the classical feedback form for an ideal PID controller, 
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 PID Ideal
1( ) 1C C D
I

G s K s
s

τ
τ

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
 

we obtain the following controller tuning correlations: 
 
 

( )* 2
21

0.5
C P

C
P C P

K
K

τ θ

τ θ

+
=

+
 ,  2I C Pτ τ θ= +  ,  and  

( )
( )

20.25

2
C P P

D
C P

τ θ θ
τ

τ θ

+
=

+
 

 
 
 
A.2.b  Interacting PID Control 
Start with the general FOPDT process model for integrating processes: 
 

 
*

* ( )
Ps

P
P

K eG s
s

θ−
=  

 

Substitute the 1/1 Padé approximation for Pse θ− : 
 

 1 0.5
1 0.5

Ps P

P

se
s

θ θ
θ

− −
≈

+
 

 

so 
( )

( )

*
* 1 0.5

( )
1 0.5

P P
P

P

K s
G s

s s
θ

θ
−

=
+

 

 

Factor * ( )PG s into invertible terms, * ( )PG s− , and noninvertible terms, * ( )PG s+ . Recall that an invertible 
term will not yield positive poles (positive roots of the denominator of the transfer function indicating 
unstable behavior) when taken in the reciprocal: 
 

 * * *( ) ( ) ( )P P PG s G s G s+ −=  
 
 

so * ( ) 1 0.5P PG s sθ+ = −  
 

and 
( )

*
* ( )

1 0.5
P

P
P

KG s
s θ− =

+
 

 

Now express the IMC controller, * ( )CG s , in terms of the invertible terms, * ( )PG s− , and a first-order 
filter term, F(s): 
 

 *
*
1( ) ( )

( )C
P

G s F s
G s−

=  

 
The filter term can be expressed in terms of a closed-loop time constant, Cτ , and the noninvertible 

process model, * ( )PG s+ , as: 
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( )

( )

* '

2

2 (0) 1
( )

1

C P

C

G s
F s

s

τ

τ

+− +
=

+
 

 

and since  
( )

( )
*

* ' (0) 0 0.5
P

P P

d G
G

ds
θ

+
+ = = −  

 

then 
( )

( )2
2 0.5 1

( )
1

C P

C

s
F s

s

τ θ

τ

+ +
=

+
 

 

Substitute F(s) and * ( )PG s− to express the IMC controller as: 
 

 
[ ] ( )

( )
*

2*

1 0.5 1 0.5 2
( )

1
P P C

C
P C

s s s
G s

K s

θ θ τ

τ

⎡ ⎤+ + +⎣ ⎦=
+

 

 

Relate this IMC controller, * ( )CG s , to a classical feedback controller, ( )CG s : 
 

 
*

* *
( )( )

1 ( ) ( )
C

C
P C

G sG s
G s G s

=
−

 

 

Substitute the above equations for * ( )CG s  and * ( )PG s : 
 

 
[ ] ( )

( ) ( ) ( )( )2*

1 0.5 1 0.5 2
( )

1 1 0.5 1 0.5 2

P P C
C

P C P P C

s s s
G s

K s s s

θ θ τ

τ θ θ τ

⎡ ⎤+ + +⎣ ⎦=
⎡ ⎤+ + − + +⎢ ⎥⎣ ⎦

 

 
Factor this into a form we can compare with the Interacting PID controller form: 
 

 
( )
( )( )

[ ]* 2 2

1 0.5 2
( ) 1 0.5

1 2 1 0.5 1 0.5 2
P C

C P
P C C P P C

s s
G s s

K s s s s s

θ τ
θ

τ τ θ θ τ

⎡ ⎤+ +⎣ ⎦= +
⎡ ⎤+ + − − + +⎣ ⎦

 

 

 
( )
( )

[ ]
* 2 2 2 2 2

1 0.5 2
          1 0.5

1 2 1 2 0.25

P C
P

P C C C P P C

s s
s

K s s s s s

θ τ
θ

τ τ τ θ θ τ

⎡ ⎤+ +⎣ ⎦= +
⎡ ⎤+ + − + + +
⎣ ⎦

 

 

 
( )

[ ]* 2 2 2 2 2

1 0.5 2
          1 0.5

0.25
P C

P
P C P P C

s s
s

K s s s

θ τ
θ

τ θ θ τ

⎡ ⎤+ +⎣ ⎦= +
⎡ ⎤+ +⎣ ⎦

 

 

 
( )

[ ]* 2 2 2

1 0.5 2
          1 0.5

0.25
P C

P
P C P P C

s s
s

K s

θ τ
θ

τ θ θ τ

⎡ ⎤+ +⎣ ⎦= +
⎡ ⎤+ +⎣ ⎦
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( ) [ ]* 2 2

1 0.5 2
          1 0.5

0.25
P C

P
P C P P C

s
s

K s

θ τ
θ

τ θ θ τ

+ +
= +

⎡ ⎤+ +⎣ ⎦
 

 

 
( )
( ) ( )

[ ]* 2 2
0.5 21 1          1 0.5

0.5 0.5
P C

P
P C P C P

s
K s

θ τ
θ

τ θ τ θ

⎡ ⎤+
⎢ ⎥= + +
⎢ ⎥+ +⎣ ⎦

 

 

 
( )
( ) ( ) [ ]* 2
0.5 21 1          1 1 0.5

2 0.50.5
P C

P
C PP C P

s
sK

θ τ
θ

τ θτ θ

⎡ ⎤+
= + +⎢ ⎥

+⎢ ⎥+ ⎣ ⎦
 

 
Compare this to the classical feedback form for an interacting PID controller, 
 

 ( )PID Interact
1( ) 1 1C C D
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we obtain the following controller tuning correlations: 
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A.2.c  Ideal PID with Filter Control 
Start with the general FOPDT process model for integrating processes: 
 

 
*

* ( )
Ps

P
P

K eG s
s

θ−
=  

 

Factor * ( )PG s into invertible terms, * ( )PG s− , and noninvertible terms, * ( )PG s+ . Recall that an invertible 
term will not yield positive poles (positive roots of the denominator of the transfer function indicating 
unstable behavior) when taken in the reciprocal: 
 

 * * *( ) ( ) ( )P P PG s G s G s+ −=  
 
 

so * ( ) Ps
PG s e θ−

+ =  
 

and 
*

* ( ) P
P

KG s
s− =  

 
Now express the IMC controller, * ( )CG s , in terms of the invertible terms, * ( )PG s− , and a first-order 
filter term, F(s): 

 *
*
1( ) ( )

( )C
P

G s F s
G s−

=  
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The filter term can be expressed in terms of a closed-loop time constant, Cτ , and the noninvertible 

process model, * ( )PG s+ , as: 
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Substitute F(s) and * ( )PG s− to express the IMC controller as: 
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Relate this IMC controller, * ( )CG s , to a classical feedback controller model, ( )CG s : 
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Substitute the above equations for * ( )CG s  and * ( )PG s : 
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Substitute the 1/1 Padé approximation for Pse θ− : 
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Factor this into a form we can compare with the ideal PID controller with filter controller form: 
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Compare this to the classical feedback model for an ideal PID controller with filter, 
 

 PID Ideal, Filter
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we obtain the following controller tuning correlations: 
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A.2.d  Interacting PID with Filter Control 
Start with the general FOPDT process model for integrating processes: 
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Factor * ( )PG s into invertible terms, * ( )PG s− , and noninvertible terms, * ( )PG s+ . Recall that an invertible 
term will not yield positive poles (positive roots of the denominator of the transfer function indicating 
unstable behavior) when taken in the reciprocal: 
 

 * * *( ) ( ) ( )P P PG s G s G s+ −=  
 
 

so * ( ) Ps
PG s e θ−

+ =  
 

and 
*

* ( ) P
P

KG s
s− =  

 

Now express the IMC controller, * ( )CG s , in terms of the invertible terms, * ( )PG s− , and a first-order 
filter term, F(s): 

 *
*
1( ) ( )

( )C
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The filter term can be expressed in terms of a closed-loop time constant, Cτ , and the noninvertible 

process model, * ( )PG s+ , as: 
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Substitute F(s) and * ( )PG s− to express the IMC controller as: 
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Relate this IMC controller, * ( )CG s , to a classical feedback controller, ( )CG s : 
 

 
*

* *
( )( )

1 ( ) ( )
C

C
P C

G sG s
G s G s

=
−

 

 
Substitute the above equations for * ( )CG s  and * ( )PG s : 
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Substitute the 1/1 Padé approximation for Pse θ− : 
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Factor this into a form we can compare with the interacting PID controller with filter controller form: 
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Compare this to the classical feedback process model for an interacting PID controller with filter, 
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 PID Interact, Filter
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we obtain the following controller tuning correlations: 
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Appendix B: Table of Laplace Transforms  
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Appendix C: DMC Controller Tuning Guides 
C.1  DMC Tuning Guide for Self Regulating (Stable) Processes 
Fit a first order plus dead time (FOPDT) dynamic model to process data.  “Process” is defined to include all dynamic 
information from the output signal of the controller through the measured response signal of the process variable.  

 

Generate process data by forcing the measured process variable with a change in the controller output signal. For 
accurate results: 
 - the process must be at steady state before forcing a dynamic response; the first data point in the file must equal that steady 

state value 
- the data collection sample rate should be ten times per time constant or faster  (T ≤ 0.1 Pτ )  
- the controller output should force the measured process variable to move at least ten times the noise band  
Use Design Tools to fit a FOPDT dynamic model to the process data set. A FOPDT model has the form: 

Time Domain:  )(
)(

ty
dt

tdy
P +τ = KP  u(t − Pθ ) Laplace Domain: 

( )
( ) 1

P
P

P

sK eY s   
U s s

−θ
=

τ +
 

where: y(t) = measured process variable signal also: T = DMC sample time; units of time 
 u(t) = controller output signal  N = DMC model horizon; samples 
 KP = process gain; units of  y(t)/u(t)  P = DMC prediction horizon; samples 
 τP = process time constant; units of time  M = DMC control horizon; samples 

 Pθ  = process dead time; units of time  λ = DMC move suppression coefficient; unitless 

These correlations provide a starting point for tuning. Final tuning may require online trial and error.  “Best” tuning is 
defined by you and your knowledge of the capabilities of the process, desires of management, goals of production, and 
impact on other processes.  

1. Approximate the manipulated-to-measured-process-variable dynamics with a first order plus dead time (FOPDT) 
model shown above. 

2. Select the sample time as close as possible to: 
0.1 pT τ=    or   0.5 pT θ=    whichever is larger 

3. Compute the prediction horizon, P,  and the model horizon, N, as the process settling time in samples (rounded to 
the next integer): 

5
Int pP N k

T
τ⎛ ⎞

= = +⎜ ⎟
⎝ ⎠

 where =Int + 1pk
T

θ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

4. Select the control horizon, M, as the time in samples required for the open loop response to reach 60% of the 
steady state: 

Int +kpM
T

τ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

5. Compute the move suppression coefficient: 

2

0                                                        1 
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10 2
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p
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M M K M
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τλ

=⎧
⎪

= ⎛ ⎞−⎨ + − >⎜ ⎟⎪
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6. Implement DMC using the traditional step response matrix of the actual process and the above parameters. 

DMC Tuning 
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C.2  DMC Tuning Guide for Integrating (Non-Self Regulating) Processes 
Fitt a FOPDT Integrating dynamic model to process data.  “Process” is defined to include all dynamic information from 
the output signal of the controller through the measured response signal of the process variable.  
 

Integrating processes are unstable so the process should already be in closed loop. If not, stabilize the process with a 
simple P-Only controller and generate process data with a set point step.  For accurate results: 
- the process must be at steady state before forcing a dynamic response; the first data point recorded must equal that steady 
state value 

- the controller output move from the set point step should force the process variable to move at least ten times the noise 
band 

Use Design Tools to fit a FOPDT Integrating dynamic model to the process data set. A FOPDT Integrating model has the form: 

Time Domain:  
dt

tdy )(
= *

PK  u(t − Pθ )               Laplace Domain: 
s
eK

 = 
sU
sY 

sPP
θ−*

)(
)(  

where: y(t) = measured process variable signal also: T = DMC sample time; units of time 
 u(t) = controller output signal  N = DMC model horizon; samples 
 K*

P = integral gain; units of  y(t)/(u(t)·time)  P = DMC prediction horizon; samples 
 Pθ  = process dead time; units of time  M = DMC control horizon; samples 
    λ = DMC move suppression coefficient; unitless 

These correlations provide a starting point for tuning. Final tuning may require online trial and error.  “Best” tuning is 
defined by you and your knowledge of the capabilities of the process, desires of management, goals of production, and 
impact on other processes.  

1. Approximate the manipulated-to-measured-process-variable dynamics with a first order plus dead time 
integrating (FOPDT Integrating) model shown above. 

2. Select the sample time as close as possible to: 
p 0 5    T . θ≤  

3. The closed-loop time constant for a FOPDT integrating model can be approximated as: 
10CL pτ θ=  

4. Compute the prediction horizon, P,  and the model horizon, N, as the process settling time in samples (rounded 
to the next integer): 

5
Int CLP N k

T
τ⎛ ⎞= = +⎜ ⎟

⎝ ⎠
 where Int 1pk

T
θ⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 

5. Select the control horizon, M, as the time in samples required for the open loop response to reach 60% of the 
steady state: 

Int CLM k
T
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6. Compute the move suppression coefficient: 
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7. Implement DMC using the traditional step response matrix of the actual process and the above parameters. 

DMC Tuning 
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* This is an ITAE  
   correlation as no  
   P-Only IMC exists 

Appendix D: PID Controller Tuning Guides 
D.1  PID Tuning Guide for Self Regulating (Stable) Processes   

 Begin by fitting a first order plus dead time (FOPDT) dynamic model to process data.  “Process” is defined to include all dynamic 
information from the output signal of the controller through the measured response signal of the process variable.  
 Generate process data by forcing the measured process variable with a change in the controller output signal. For accurate results: 
  - the process must be at steady state before forcing a dynamic response; the first data point recorded must equal that steady state value 
  - the data collection sample rate should be ten times per time constant or faster  (T ≤ 0.1 Pτ )  
  - the controller output should force the measured process variable to move at least ten times the noise band 
 

  Use Design Tools to fit a FOPDT dynamic model to the process data set. A FOPDT model has the form: 

    Time Domain:  )(
)(

ty
dt

tdy
P +τ = KP  u(t − Pθ )                Laplace Domain: 

1)(
)(

+τ

θ−

s
eK

 = 
sU
sY 

P

P
sP

 

   where:  y(t)  =  measured process variable signal        also:  

   u(t)  =   controller output signal  KC  =  controller gain; units of  u(t)/y(t) 
   KP  =  process gain; units of  y(t)/u(t)  Iτ  =  controller reset time; units of time 

            Pτ   =  process time constant; units of time  Dτ  =  controller derivative time; units of time 

         Pθ  =  process dead time; units of time    α = derivative filter constant; unitless 

Values of KP, Pτ  and Pθ  that describe the dynamic behavior of your process are important because: 

      - they are used in correlations (listed below) to compute initial PID controller tuning values  KC , Iτ , Dτ  and α 
      - the sign of KP indicates the action of the controller (+KP → reverse acting;   − KP  → direct acting) 
      - the size of Pτ  indicates the maximum desirable loop sample time (be sure sample time T ≤ 0.1 Pτ ) 

      - the ratio PP τθ /  indicates whether a Smith predictor would show benefit (useful when PP τθ ≥ ) 
      - the model itself is used in feed forward, Smith predictor, decoupling and other model-based controllers 

  These correlations provide an excellent start for tuning. Final tuning may require online trial and error.  “Best” tuning is defined by you 
  and your knowledge of the capabilities of the process, desires of management, goals of production, and impact on other processes.  
 

IMC (lambda) Tuning 
 

  Aggressive Tuning:   Cτ  is the larger of   0.1 Pτ   or   0.8 Pθ       
 Moderate Tuning:   Cτ   is the larger of  1.0 Pτ   or   8.0 Pθ  
 Conservative Tuning:   Cτ   is the larger of   10 Pτ   or    80 Pθ  
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* This is a Ziegler-Nichols 
   process reaction curve 
   (PRC) correlation as no  
   P-Only IMC exists 

D.2  PID Tuning Guide for Integrating (Non-Self Regulating) Processes 
 
   Begin by fitting a first order plus dead time integrating (FOPDT Integrating) dynamic model to process data.  “Process” is defined to 
include all dynamic information from the output signal of the controller through the measured response signal of the process variable.  
   Integrating processes are unstable so the process should already be in closed loop. If not, stabilize the process with a simple P-Only 
controller and generate process data with a set point step.  For accurate results: 
    - the process must be at steady state before forcing a dynamic response; the first data point recorded must equal that steady state value 
   - the controller output movement from the set point step should force the process variable to move at least ten times the noise band    

 Use Design Tools to fit a FOPDT Integrating dynamic model to the process data set. A FOPDT Integrating model has the form: 

    Time Domain:  
dt

tdy )(
= *

PK  u(t − Pθ )                  Laplace Domain: 
s
eK

 = 
sU
sY 

sPP
θ−*

)(
)(  

   where:                   also: 
    y(t)  =  measured process variable signal   KC   =   controller gain; units of  (u(t)·time)/y(t) 
   u(t)  =   controller output signal  Iτ  =  controller reset time; units of time 

         KP
*  =  integrator gain; units of  y(t)/(u(t)·time)  Dτ  =  controller derivative time; units of time 

   Pθ  =  process dead time; units of time           α = derivative filter constant; unitless 

  Values of *
PK  and Pθ  that describe the dynamic behavior of your process are important because: 

      - they are used in correlations (listed below) to compute initial PID controller tuning values  KC , Iτ , Dτ  and α 
      - the sign of KP

* indicates the action of the controller (+KP
* → reverse acting;   − KP

*  → direct acting) 
 
  These correlations provide an excellent start for tuning. Final tuning may require online trial and error.  “Best” tuning is defined by you 
  and your knowledge of the capabilities of the process, desires of management, goals of production, and impact on other processes.  
 

IMC (lambda) Tuning 
                           Standard Tuning:  Cτ   = 10Pθ  
                Conservative Tuning:   Cτ   = 105 Pθ  
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A 
anti-reset windup, 78 
apparent dead time, 25, 26, 69, 

238 
definition, 30 
estimation from step test data, 

31 
automatic control, 8 

examples, 12 
automatic mode, 11, 25 

B 
balance 

energy 
well-stirred tank, 104 

mass, 99 
draining tank, 100 
non-interacting draining 

tanks in series, 103 
species (component) 

well-stirred tank, 106 
block diagrams, 11, 155 

cascade architecture, 180 
cascade jacketed reactor 

architecture, 188 
closed loop, 158 
control loop 

general, 12 
distillation column process, 

210, 212 
feed forward controller with 

feedback trim, 195 
level-to-flow cascade 

architecture, 184 
multiplier block, 156 
simplified, 161 
Smith predictor architecture, 

240 
summer block, 156 

bumpless transfer, 48, 75 

C 
cascade control 

controller design, 183, 187 
controller tuning, 184 
for improved disturbance 

rejection, 180, 183 
primary loop control, 190 
secondary loop control, 189 

cascade jacketed reactor. See Case 
Studies 

Case Studies, 9, 15, 35, 36 

cascade jacketed reactor, 19, 
187 
block diagram, 188 

distillation column, 22, 209 
decoupling control loops, 

218 
interacting control loops, 

214 
furnace air/fuel ratio, 19 
gravity drained tanks, 15, 26, 

28, 31, 41, 42, 44, 48, 67, 
76, 84, 91, 96, 103 

heat exchanger, 16, 27, 29, 32, 
43, 46, 49, 56, 59, 79 

jacketed reactor, 18, 49, 184 
feed forward disturbance 

rejection, 202 
vs. cascade jacketed reactor, 

185 
multi-tank process, 21 
pumped tank, 17 

characteristic equation. See 
ordinary differential equations 
(ODEs) 

closed loop time constant. See 
internal model control (IMC) 
tuning correlations 

complementary solution. See 
ordinary differential equations 
(ODEs) 

complex conjugates 
poles as, 150 

complex s plane, 133 
conserved variables, 99 
control objective 

definition, 10 
Loop Pro, 9, 24, 64 

Custom Process, 51, 64, 67, 
223, 224, 241 

Design Tools, 15, 43, 51, 52, 
55, 56, 57, 58, 59, 60, 67, 
75, 76, 77, 90, 95, 186, 202, 
215, 216, 219, 241, 243, 254 

controller bias, 42, 75 
definition, 39, 43 

controller design, 37, 55 
using closed loop data, 59 

controller error, 42 
definition, 10, 39 

controller gain. See tuning, 
controller 

controller output, 26, 39 
definition, 10, 25 

controller performance, 83 
criteria for evaluation, 83, 84 

decay ratio, 84 

peak overshoot ratio, 84 
rise time, 84 
settling time, 84 

improvement using Smith 
predictors, 244 

peek overshoot ratio, 238 
cruise control, 13, 39, 42 
Custom Process. See Loop Pro 

D 
decay ratio. See controller 

performance 
decouplers, 22, 64, 210, 232 

as feed forward elements, 218 
construction of, 212 
for eliminating chatter, 222 
for improved set point tracking, 

221 
implementation of, 211 

derivative kick, 88 
derivative time. See tuning, 

controller 
design level of operation, 24, 42, 

43, 46 
Design Tools. See Loop Pro 
deviation variables, 113, 155 
direct action, 26, 44 
distillation column. See Case 

Studies 
disturbance 

definition, 10 
disturbance rejection, 43, 46, 76, 

79, 183, 187, 191, 194 
doublet test, 26, 53, 56 
dynamic matrix control (DMC). 

See model predictive control 
(MPC) 

dynamic process 
behavior 

definition, 24 
empirical modeling from data, 

99 
modeling for controller tuning 

and design, 24, 26 
theoretical models derived 

from first principles, 99 

F 
feed forward control, 26, 56, 64 
feed forward model 

controller design, 198 
feed forward element, 199 
feedback trim, 194 



 

288 
 

Practical Process Control® by Douglas J. Cooper 
Copyright © 2005 by Control Station, Inc. 

All Rights Reserved 

for improved disturbance 
rejection, 194, 196, 198, 203 

model limits 
dead time difference, 200 
highest model order, 200 
model order ratio, 201 
process lead, 201 

static controller, 206 
theory, 198 

feedback control loop, 37 
final control element 

definition, 10 
examples, 12 

first order plus dead time 
(FOPDT) dynamic model, 24, 
25, 43, 56, 64, 65 
controller output driven vs. 

disturbance driven, 62 
limitations, 32 
parameters. See steady state 

process gain, overall process 
time constant, apparent dead 
time 

vs. SOPDT model, 66 
vs. SOPDT w/L model, 71 

first order plus dead time with 
integrator dynamic model, 56 

flash drum process, 181, 196 
furnace air/fuel ratio. See Case 

Studies 

G 
good engineering practice for 

derivations, 99 
gravity drained tanks. See Case 

Studies 

H 
heat exchanger. See Case Studies 
hydrostatic head, 101, 102 

I 
integral of time-weighted absolute 

error (ITAE) tuning correlations, 
43, 76 
PI control 

for disturbance rejection, 76 
for set point tracking, 76 

P-Only control 
for disturbance rejection, 43 
for set point tracking, 43 

integrating factor, 117 
intermediate value control, 39, 41 
internal model control (IMC) 

tuning correlations 

derivations for non-self 
regulating processes, 272 

derivations for self 
regulating processes, 263 

internal model control (IMC) tuning 
correlations, 43, 56, 75, 90, 95 
closed loop time constant, 75, 

90, 95 
PI control, 76 
PID control, 90 

with filter, 95 
standard tuning vs. 

conservative tuning, 75, 90 
inverse process 

FOPDT fit, 63 

J 
jacketed reactor. See Case Studies 

L 
lambda tuning correlations, 56, 75 
Laplace transform 

definition, 133 
properties, 135 
table, 282 

lead time, 70 
definition, 70 

limit of stability, 165 
linearization, 110 

for functions of one variable, 
111 

for functions of two variables, 
112 

loop sample time, 26 

M 
manual mode, 11, 24 
measurement noise, 54, 89, 93 
measurement sensor 

definition, 11 
examples, 12 

model predictive control (MPC), 
239, 248 
dynamic matrix control 

(DMC), 248 
control horizon, 250, 253 
controller performance, 254, 

260 
controller tuning, 253 
model horizon, 250, 253 
move suppression 

coefficient, 253 
prediction horizon, 249, 

252, 253 
process model, 251 

quadratic (QDMC), 251 
sample time, 250, 252, 253 
single-input-single-output 

(SISO) process, 253 
single-loop controller 

design, 248 
tuning strategy, 262 

multi-tank process. See Case 
Studies 

multivariable process control, 209, 
223 
cross-loop disturbance, 211 
decoupling cross-loop control 

effect of overall process 
time constant on, 235 

effect of process dead time 
on, 236 

effect of process gain on, 
232 

loop interaction, 224 
effect of overall process 

time constant on, 228 
effect of process dead time 

on, 230 
effect of process gain on, 

224 
multi input multi output 

(MIMO), 209, 223, 224 

N 
noise band, 54 
nonlinear behavior of real 

processes, 33, 42 
non-self regulating (integrating) 

processes, 17 

O 
offset, 45, 74 
on/off control, 38, 39 
ordinary differential equations 

linear vs. nonlinear, 110 
ordinary differential equations 

(ODEs) 
Laplace domain, 133, 144 
moving from Laplace domain 

to time domain, 141 
moving from time domain to 

Laplace domain, 138 
time domain, 117 

second order 
characteristic equation, 

144 
second order underdamped 

form, 126 
solving first order, 117 
solving second order, 121 
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characteristic equation, 
121 

solving second-order 
complementary solution, 

121 
particular solution, 121 

overall process time constant, 25, 
26, 67 
63.2% of Process Step 

Response rule, 119 
definition, 28 
estimation from step test data, 

28 

P 
Padé approximation, 161 
particular solution. See ordinary 

differential equations (ODEs) 
peak overshoot ratio. See 

controller performance 
peak time. See controller 

performance 
perturbation variables. See 

deviation variables 
PI control, 72 

algorithms, 72 
continuous form vs. discrete 

form, 81 
controller design, 75 
controller tuning map, 80 
oscillatory behavior, 75, 92 

PID control 
algorithms, 39, 86 

derivative on measurement, 
88 

derivative term, 40, 87, 89 
ideal (non-interacting) form, 

86, 90 
ideal (non-interacting) with 

derivative filter form, 95, 
96 

integral term, 40, 87 
interacting form, 86, 90 
interacting with derivative 

filter form, 95, 96 
proportional term, 40, 87 

controller design, 90 
with filter, 95 

derivative filter, 94 
P-Only control, 41, 43 

algorithms, 42 
controller design, 44 

process variable 
manipulated 

definition, 10 
measured, 26, 42 

definition, 10, 25 
primary, 181 
secondary, 181, 183 

profit motive, 8 
proportional band, 48 
pseudo-random binary sequence 

(PRBS) test, 26, 53 
pulse test, 26, 52 
pumped tank. See Case Studies 

R 
regulatory control. See disturbance 

rejection 
relative gain, 224 

equal to 1, 227, 233 
from 0.5-1, 227, 232 
from 0-0.5, 226, 232 
greater than 1, 228, 233 
loop interaction, 225 
much greater than 1, 228, 234 
negative, 225, 232 

reset rate, 81 
reset time. See tuning, controller 
reset windup, 82 
reverse action, 26, 44 
rise time. See controller 

performance 
root locus, 148, 162 
roots of the characteristic 

equation, 121, 127, 144 

S 
safety, 8, 20, 21, 33 
second order plus dead time 

(SOPDT) dynamic model, 65 
overdamped, 56 
underdamped, 56 
vs. FOPDT model, 66, 67, 69 

second order plus dead time with 
lead time (SOPDT w/L) 
feed forward element, 200 

second order plus dead time with 
lead time (SOPDT w/L) 
dynamic model, 65, 70 
overdamped, 56 

self regulating process 
definition, 65 

servo control. See set point 
tracking 

set point 
definition, 10 

set point tracking, 43, 44, 76, 91, 
96, 192, 207 

settling time. See controller 
performance 

single loop control problems 
cascade solution, 183 
feed forward solution, 197 

Smith predictors, 26, 64, 239 
control algorithm, 239 

steady state process gain, 25, 26, 
42, 44, 67 
definition, 26 

step test, 26, 52 
sum of squared errors (SSE), 56 

T 
time varying bevahior of real 

processes, 33 
transfer functions 

closed loop 
process variable to 

disturbance, 160 
process variable to set point, 

160 
combination, 155 
controller, 146 
poles (roots), 148 
process, 144 

tuning, controller 
parameters, 11 

controller gain, 39, 42, 43, 
44 

derivative time, 39, 86 
reset time, 39, 72 

tuning guide, 285 

U 
underdamped process 

FOPDT fit, 62 
 


