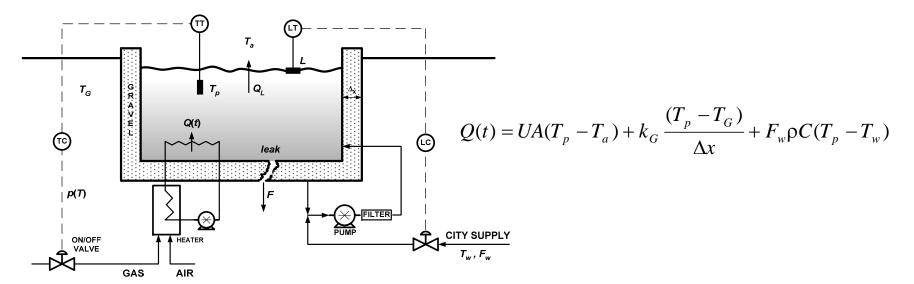
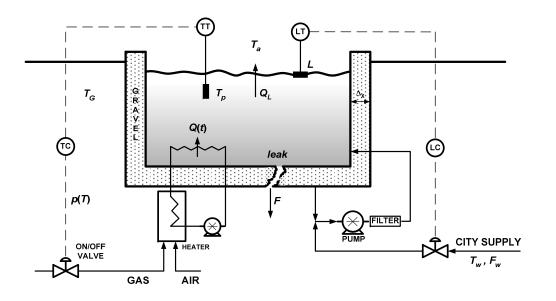

Process Dynamics


Class 3

1.8. Homework Review

Outputs: T_p , L(level) Inputs: Q(t), F_w Disturbances: T_w , T_a $Q(t) = UA(T_p - T_a) + k_G \frac{(T_p - T_G)}{\Delta x} + F_w \rho C(T_p - T_w)$


1.8. Dynamic Energy Balance

Accumulation = In – Out + Gen - Cons

$$\begin{aligned} \frac{\partial h}{\partial t} &= Q(t) - UA(T_p - T_a) - k_G \frac{(T_p - T_G)}{\Delta x} - F_w \rho C(T_p - T_w) \\ \frac{\partial mC(T_p - T_{ref})}{\partial t} &= Q(t) - UA(T_p - T_a) - k_G \frac{(T_p - T_G)}{\Delta x} - F_w \rho C(T_p - T_w) \\ mC \frac{\partial T_p}{\partial t} + C(T_p - T_{ref}) \frac{\partial m}{\partial t} = Q(t) - UA(T_p - T_a) - k_G \frac{(T_p - T_G)}{\Delta x} - F_w \rho C(T_p - T_w) \end{aligned}$$

1.8. FOPDT Model

 $\tau \frac{\partial x}{\partial t} = -x + Ku(t - \theta)$ $\tau = \text{Time constant}$ K = Gain $\theta = \text{Dead-time}$

Assume Ta = Tp and Tg = Tp

$$mC\frac{\partial T_p}{\partial t} = Q(t) - F_w \rho C(T_p - T_w)$$
$$\frac{mC}{F_w \rho C}\frac{\partial T_p}{\partial t} = -T_p + \frac{Q(t)}{F_w \rho C} + T_w$$

 $\tau \frac{\partial x}{\partial t} = -x + K_u u + K_d d$

 τ = Time constant

 K_u = Manipulated Variable Gain

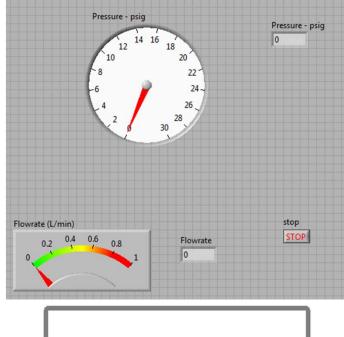
$$K_d$$
 = Disturbance Gain

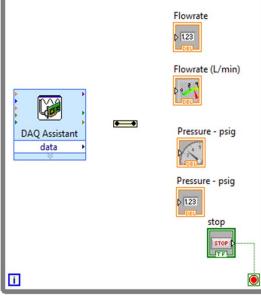
Lab Project

- Objective: Hands on control experiment
 - Collect data and develop model
 - Reinforce the concepts taught in class about:
 - process time constants
 - controller tuning constants
 - Write executive summary (2 pages max) & present (5 min)
- 5 Lab Options
 - Gravity Drained Tank
 - Shell and Tube Heat Exchanger
 - Flow Control on Pipes and Fittings
 - Finned Tube Heat Exchanger
 - NEW Your Choice of System

Lab Project Ideas

- Hot Chocolate Temperature Control
 - Actuator: Resistor
 - Measurement: Thermocouple
 - Controller: LabView



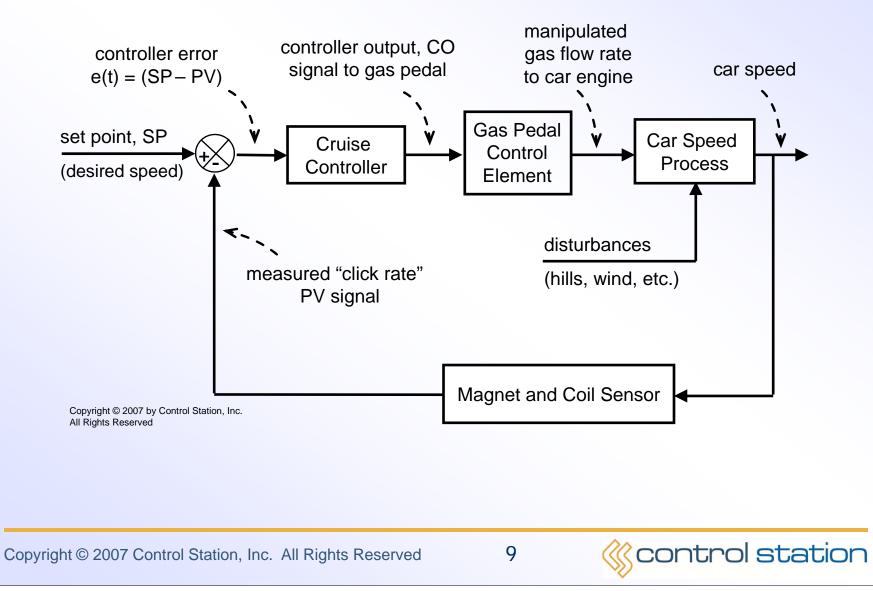

Temperature	Flow	Pressure	Level
Thermocouple	Orifice	Bourdon tube	Fload
Thermister	Venturi	Diaphragm	Head device
Resistance Temperature	Rotameter	Bellows	Electrical conductivity
Detector (RTD)	Turbine	Strain gauge	
	Vortex-shedding	Piezoelectric	
	Thermal mass	Piezoresistive	

- Your Own Project:
 - Actuator:
 - Measurement:
 - Controller:

LabView Example (ChE 475)

Flowrat	,	Voltage Input Setup	
Pressur	re	Signal Input Range	Scaled Units
		Max 1 Min 0	L/min
		Ter	minal Configuration
(+) to add n	ld Channels button more channels to		Differential stom Scaling
		Cus	Differential
(+) to add n	more channels to	Cus	Differential stom Scaling

Thought Experiment: Cruise Control in a Car


- Control Objective:
 - maintain car velocity
- Measured Process Variable (PV):
 - car velocity ("click rate" from transmission rotation)
- Manipulated Variable:
 - pedal angle, flow of gas to engine
- Controller Output (CO):
 - signal to actuator that adjusts gas flow
- Set point (SP):
 - desired car velocity
- Disturbances (D):

- Allianz
- hills, wind, curves, passing trucks....

Cruise Control Block Diagram

The PID Controller

$$OP = OP_{bias} + K_c e(t) + \frac{K_c}{\tau_I} \int e(t) dt - K_c \tau_D \frac{\partial PV}{\partial t}$$

where:

- OP = controller output signal (also seen as CO in PPC)
- OP_{bias} = controller bias or null value
- PV = measured process variable
- SP = set point
- e(t) = controller error = SP PV
- Kc = controller gain (a tuning parameter)
- τ_I = controller reset time (a tuning parameter)
- τ_D = controller derivative action (a tuning parameter)
- τ_I is in denominator so smaller values provide a larger weighting to the integral term
- τ_I and τ_D have units of time and are always positive

Copyright © 2007 Control Station, Inc. All Rights Reserved

