Class 17

More Laplace

Initial Value

$$\frac{(s+2)}{(s+3)(s+4)}$$

Multiply by s and set $s = \infty$

$$\frac{s(s+2)}{(s+3)(s+4)} = \left[\frac{1\left(1+\frac{2}{s}\right)}{\left(1+\frac{3}{s}\right)\left(1+\frac{4}{s}\right)} \right]_{s \to \infty} = 1$$

Divide both top and bottom by s²

Final Value

$$\frac{(s+6)}{(s+1)(s+2)}$$

Multiply by s and set s = 0

$$\frac{s(s+6)}{(s+1)(s+2)} = \left[\frac{s(s+6)}{(s+1)(s+2)}\right]_{s\to 0} = 0$$

Complex Factors

- Denominator may have complex roots
 - $-s^2 + d_1s + d_0$ where $d_1^2/4 < d_0$
 - Remember quadratic formula

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

• Example: $s^2 + 4s + 5$

or s = -2 - j and -2 + j

Example:
$$s^2 + 4s + 5$$

$$(s+2+j)(s+2-j)$$

$$2 \cdot 1$$

Implications of Complex Factors

- Complex roots indicate oscillatory behavior
- If the sign of the real part of the complex roots is negative, convergence is expected
 - Conversely, if the real part is positive, it will diverge
- Algebra needed to invert transforms with complex roots is messy but doable
- We don't need to invert the transform to tell whether it will converge or diverge, or whether or not it will oscillate

Practice

 Will y(t) converge or diverge? Is y(t) smooth or oscillatory?

$$Y(s) = \frac{s+2}{s(s^2+4s+13)}$$

Method 1: $s^2 + 4s + 13 = (s+2)^2 + 9 \implies oscillatory$

Method 2:
$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 13}}{2 \cdot 1} = \frac{-4 \pm \sqrt{-36}}{2} = -2 \pm 3j$$

oscillatory, converging

Inverting Transforms with Complex Roots in the Denominator

- There are at least two different ways to proceed as described in your text:
 - Expansion without using complex numbers, followed by completing the square to invert the transform (preferred)
 - Example 3.4
 - Use of complex numbers and Euler's identity (p. 43)
 - $\cos(\omega t) = (e^{j\omega t} + e^{-j\omega t})/2$; $\sin(\omega t) = (e^{j\omega t} e^{-j\omega t})/2$

Completing the Square

This is the original equation.	$x^2 + 6x - 7 = 0$
Move the loose number over to the other side.	$x^2 + 6x = 7$
Take half of the x-term (that is, divide it by two) (and don't forget the sign!), and square it. Add this square to both sides of the equation.	$x^2 + 6x + 9 = 7 + 9$ $+ 3 \rightarrow +9$
Convert the left-hand side to squared form. Simplify the right-hand side.	$(x+3)^2 = 16$

Example 1

$$Y(s) = \frac{s+2}{s(s^2+4s+5)} = \frac{\alpha_1}{s} + \frac{\alpha_2 s + \alpha_3}{s^2+4s+5}$$

- Find α_1 : $\alpha_1 = \left[\frac{s(s+2)}{s(s^2+4s+5)} \right]_{s=0} = \frac{2}{5}$
- To get α_2 and α_3 , clear denominator and match "like" terms

$$s + 2 = \alpha_1(s^2 + 4s + 5) + s(\alpha_2 s + \alpha_3) = (\alpha_1 + \alpha_2)s^2 + (4\alpha_1 + \alpha_3)s + \alpha_1 5$$

- s^2 terms $\rightarrow \alpha_1 + \alpha_2 = 0$, so $\alpha_2 = -2/5$
- s terms \rightarrow 4 α_1 + α_3 = 1, so α_3 = -3/5

$$Y(s) = \frac{2}{5s} + \frac{-\frac{2}{5}s - \frac{3}{5}}{s^2 + 4s + 5}$$

Complete the square Put into proper form for inversion

- Wanted: $s^2 + 4s + 5 = (s+b)^2 + w^2$
- How?
 b = (coefficient in front of s term)/2 = 4/2 = 2
- Knowing b, find w $b^2 + w^2 = 5 = 4 + w^2$, so w = 1

$$Y(s) = \frac{2}{5s} + \frac{-\frac{2}{5}s - \frac{3}{5}}{(s+2)^2 + 1}$$

Need to Get Form in Laplace Table

$$L\left\{e^{-bt}\cos(\omega t)\right\} = \frac{s+b}{(s+b)^2 + \omega^2}$$
#15 in Table 3.1

$$L\left\{e^{-bt}\cos(\omega t)\right\} = \frac{s+b}{(s+b)^2 + \omega^2}$$

$$L\left\{e^{-bt}\sin(\omega t)\right\} = \frac{\omega}{(s+b)^2 + \omega^2}$$

$$\frac{-\frac{2}{5}s - \frac{3}{5}}{(s+2)^2 + 1}$$

 $\frac{-\frac{2}{5}s - \frac{3}{5}}{(s+2)^2 + 1}$ Has both an s and a number on the top

$$\frac{-\frac{2}{5}s - \frac{3}{5}}{(s+2)^2 + 1} = \frac{-\frac{2}{5}(s+2) + \frac{1}{5}}{(s+2)^2 + 1} = -\frac{2}{5} \left[\frac{(s+2)}{(s+2)^2 + 1} \right] + \frac{1}{5} \left[\frac{1}{(s+2)^2 + 1} \right]$$

Finally:

$$Y(s) = \frac{2}{5s} - \frac{2}{5} \left[\frac{(s+2)}{(s+2)^2 + 1} \right] + \frac{1}{5} \left[\frac{1}{(s+2)^2 + 1} \right]$$

and inverting

$$y(t) = \frac{2}{5} - \frac{2}{5}e^{-2t}\cos t + \frac{1}{5}e^{-2t}\sin t$$

Analyze the Equation

$$y(t) = \frac{2}{5} - \frac{2}{5}e^{-2t}\cos t + \frac{1}{5}e^{-2t}\sin t$$

- e^{-t} terms mean that the system will converge at long time
- sin and cos terms mean permanent oscillations

One More Practice Problem

$$Y(s) = \frac{1}{s^2 - 4s + 13}$$

$$s^2 - 4s + 13 = (s - 2)^2 + 9$$

$$Y(s) = \frac{1}{(s - 2)^2 + 9} = \frac{1}{3} \frac{3}{(s - 2)^2 + 3^2}$$

$$y(t) = \frac{1}{3}e^{2t}\sin(3t)$$

Oscillatory, diverges

What if Roots to Denominator Are:

Overall: Oscillatory, diverges