## **Example 1. Linearization with one variable**

Linearize the following equation around  $\bar{x} = 3$ :

$$f(x) = 3x^3 + 5x^2 + 27$$

(i) Write the Taylor's series expansion:

$$f(x) = f(\overline{x}) + \frac{\partial f}{\partial x}\Big|_{x=\overline{x}} (x-\overline{x})$$

(ii) Evaluate 
$$f(\bar{x}) = 3(3)^3 + 5(3)^2 + 27 = 3(27) + 5(9) + 27 = |53|$$

(iii) What is the derivative of the function? 
$$\left(\frac{df}{dx}\right) = 9 \times 2 + 10 \times 10$$

(iv) Evaluate 
$$f'(\bar{x}) = 9 (3)^2 + 10(3) = 111$$

(v) Write the final linear expression 
$$f(x) = 153 + 111 \times -3$$

## **Example 2. Linearization with two variables**

Linearize the following equation around  $\bar{x} = 2$  and  $\bar{y} = 2$ :

$$f(x, y) = 3xy + y^2 - 3x^2$$

(i) Write the Taylor's series expansion:

$$f(x,y) = f(\widehat{x}, \overline{y}) + \frac{\partial f}{\partial x}\Big|_{\substack{x = \widehat{x} \\ y \in \widehat{y}}} (x - \widehat{x}) + \frac{\partial f}{\partial y}\Big|_{\substack{x = \overline{x} \\ y \in \widehat{y}}} (y - \overline{y})$$

(ii) Evaluate 
$$f(\bar{x}, \bar{y}) = 3(2)(2) + (2)^2 - 3(2)^2 = 4$$

(iii) What are the partial derivatives of the function?

$$\frac{\partial f}{\partial x} = 3y - 6x$$

$$\frac{\partial f}{\partial y} = 3x + 2y$$

(iv) Evaluate 
$$\frac{\partial f}{\partial x}\Big|_{\bar{x},\bar{y}} = 6 - 17 = -6$$

$$\left. \frac{\partial f}{\partial y} \right|_{\bar{x},\bar{y}} = 6 + 4 = 10$$

(v) Write the final linear expression:

$$f(x) = 4 - 6(x-2) + 10(y-2)$$

## **Example 3. CSTR with three variables**



$$-r_A = k_1 C_A^2 - k_2 C_A C_B$$

(i) Write the transient mole balance for species A:

$$V\frac{dC_A}{dt} = C_{A,in} q_{in} - C_{A} q + \left(-k_i C_A^2 + k_i C_A C_S\right) V$$

- (ii) Assume  $k_1$ ,  $k_2$ ,  $q_i$ , q, and V are constant. The function to linearize is just the RHS of the above equation! The variables are  $\underline{\mathcal{L}}_{\underline{a}}$ ,  $\underline{\mathcal{L}}_{\underline{b}}$ , and  $\underline{\mathcal{L}}_{\underline{b}}$ .
- (iii) At steady state, what is the value of  $V \frac{dC_A}{dt}$ ?  $\underline{\bigcirc}$ . Therefore,  $f(\overline{C}_{Ai}, \overline{C}_A, \overline{C}_B) = \underline{\bigcirc}$ .
- (iv) Write the Taylor's series expansion:  $f(C_{A,i}, C_A, C_B) = f(\overline{C_{A,i-1}}, \overline{C_{A}}, \overline{C_{D}}) + \frac{\partial f}{\partial C_{A,i-1}} \Big|_{C_{A,i-1}} \Big|_{C_{A,i-1}}$
- (v) What are the partial derivatives of the function?

$$\frac{\partial f}{\partial C_{A,i}} = 7.5$$

$$\frac{\partial f}{\partial C_A} = -9.7 + C_A V + k_z C_S V$$

$$\frac{\partial f}{\partial C_B} = k_z C_A V$$

- (vi) Evaluate  $\frac{\partial f}{\partial C_{A,i}}\Big|_{ss} = \mathcal{F}_{in}$   $= \mathcal{E}_{in}$   $\frac{\partial f}{\partial C_{A}}\Big|_{ss} = -\mathcal{F}_{in}$   $= \mathcal{E}_{in}$   $\frac{\partial f}{\partial C_{B}}\Big|_{ss} = \mathcal{E}_{in}$   $= \mathcal{E}_{in}$
- (vii) Write the final linear expression:

$$f(C_{A,i}, C_A, C_B) = \underline{\bigcirc} + \underline{\swarrow} (C_{A,i} - \overline{C}_{A,i}) + \underline{\searrow}_2 (C_A - \overline{C}_A) + \underline{\swarrow}_3 (C_B - \overline{C}_B)$$

Now introduce deviation variables (the prime here is not a derivative): (viii)

$$C'_{A,i} = C_{A,i} - \overline{C}_{A,i}$$

$$C_{A}' = C_{A} - \overline{C}_{A}$$

$$C_B' = C_B - \overline{C}_B$$

The transient linearized equation now becomes: (ix)

$$V\frac{dC_A}{dt} = V\frac{dC'_A}{dt} = \underbrace{\swarrow}_{C'_{A,i}} + \underbrace{\swarrow}_{C'_{A,i}}$$

All of the underlined terms above are constants, since they were evaluated at the steady-state (x) condition. For convenience in this equation, call the second constant  $c_1$ . The standard form for solving this equation using Laplace transforms is:

$$\tau \frac{dy'}{dt} + y' = f(x_1, x_2, x_3, etc.)$$

$$\tau \frac{dy'}{dt} + y' = f(x_1, x_2, x_3, etc.) \qquad \forall \frac{\partial C_A}{\partial t} = \langle C_A \rangle + \langle C_A \rangle + \langle C_A \rangle + \langle C_A \rangle$$

Put the equation in (ix) into standard form:

$$\frac{V}{dC'_A} + C'_A = \underbrace{\begin{pmatrix} \times \\ - \times \\ 2 \end{pmatrix}}_{C'_{A,i}} + \underbrace{\begin{pmatrix} \times \\ \times \\ 2 \end{pmatrix}}_{C'_B} C'_B$$

$$\frac{dC_A}{dt} = \frac{dC_A}{dt} = \frac{dC_A}{dt} = \frac{dC_A}{dt}$$

$$\frac{dC_A}{dt} = \frac{dC_A}{dt}$$

$$\frac{dC_A}{dt} = \frac{dC_A}{dt}$$