Worksheet on Linearization

Example 1. Linearization with one variable

Linearize the following equation around X =3:

(i)

(i)

(iii)

(iv)
(v)

f(x)=3x%+5x*+27
Write the Taylor’s series expansion:

)= L(%) + Ll (x-%)

dx Ix=%

Evaluate f(x)= 3 () « S (3)"+27 = 3 (1) + §(N?=]53
What is the derivative of the function? (d_j: ﬁxz + 10 %

Evaluate f/(x)= 9 (3)° > (0 (3)= 11
Write the final linear expression f(x)= | 5 > + [// (X ’3>

Example 2. Linearization with two variables

Linearize the following equation around X =2 and y =2:

(i)

(i)
(i)

(iv)

(v)

f(x,y)=3xy+y*-3x°

Write the Taylor’s series expansion: ac
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Evaluate f(X,y) = 3%%2%% (Y - 37y =

What are the partial derivatives of the function?
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Write the final linear expression:

= 4 —6 (x-2) + /0(y-72)



Example 3. CSTR with three variables

(i)

(i)

(iii)

(iv)

v)

(vi)

(vii)
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Write the transient mole balance for species A:

dC, o B o
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Assume ki, k2, gi, g, and V are constant. The function to linearize is just the RHS of the
above equation! The variables are Cﬂ Q , and ¢ B .

/
At steady state, what is the value of V d;E[A ? O , Nime Jertvmdiees  n 2ere

Therefore, f(C,,,C,,C,) =0

Write the Taylor’s series expansion:

N —\, # A b -
f(Ci CaCq) = ?(CAMCA/CO + i |e-zm (CA C u( (gAfQ £ /(B/Q
O C, fZA Alse
Co~Cgq
What are the partial derivatives of the function?
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Write the final linear expression:
f(CA,i’CNCB) = Q-l-—o(-Q—(CA,i _C_:A,i)'l' O<L (CA_C_:A) +A_(CB _65)
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(viii)  Now introduce deviation variables (the prime here is not a derivative):

C,’A,i = CA,i - CA,i
c,=C,-C,
C,=C, -C,
(ix)  The transient linearized equation now becomes:
vEayEa_oic e < cie ot

(x)  All of the underlined terms above are constants, since they were evaluated at the steady-state
condition. For convenience in this equation, call the second constant c:. The standard form

for solving this equation using Laplace transforms is:

dy’ d Ca , /
rd—{+y:f(x1,x2,x3,etc.) E: = 0415“ + oL, Ch + oLy C&

Put the equation in (ix) into standard form:
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