Process Dynamics and Control

CH EN 436 Dr. John Hedengren

Schedule

Course Web-Site

http://apmonitor.com/che436

- Course Group Projects
 - Project 1: Arduino Temperature Control
 - Project 2: Simulation Lab
- Teaching Method: Think, Pair, Share

Process Dynamics and Control

Dynamics and Control

- Dynamic Modeling
 - Empirical Modeling
 - Graphical Approach
 - Optimization Approach
 - Fundamental Modeling
- Controller Design
 - PID
 - Model Predictive Control
- Example: Maintain Speed of Automobile

Dynamic Modeling

Automobile Speed Modeling

- Dynamic Modeling
 - Gain (K_p)
 - Time Constant (τ_p)
 - Apparent Dead Time (θ_p)

First Order Plus Dead-Time (FOPDT)

$$\tau_p \frac{\partial x}{\partial t} = -x + K_p u(t - \theta_p)$$

Dynamic Modeling from Fundamentals

- v = 50 m/s Desired Velocity
- m = 500 kg (mass)
- b = 50 N-s/m (resistive coefficient)
- $K_p = 0.5 \text{ m/s} / (\% \text{ gas pedal})$
- u = ? (% gas pedal)
- Time delay = 0.5 seconds

Force Balance

$$\frac{m}{b}\frac{\partial v}{\partial t} = -v + K_p \ u(t - 0.5)$$

FOPDT Model

$$\tau_p \frac{\partial x}{\partial t} = -x + K_p u(t - \theta_p)$$

Automobile Speed Control

Controller Design

FOPDT Dynamic Model

 $K_p =$ Process Gain

 τ_p = Process time constant

 θ_p = Process dead - time

PID Controller

 $K_C =$ Controller Gain

 τ_I = Integral time constant

 τ_D = Derivative time constant

IPP

- Two 975 MW boilers
 - 1 million lbs/hr of coal in each boiler
 - 10-15% ash
 - Tight control of NO_x, SO_x, particulate
 - Majority of ash sold for use in concrete
- AC power converted to DC
- All power shipped to LA and re-inverted to AC power

Old Control Room

New Control Room

Suppose the demand for electricity decreases at 11 pm....

What must be changed to lower the electrical output?

Assignment

- Reading (see Class Schedule)
- Fill Out Info Sheet, Q1.1 (PPC)
 - http://apmonitor.com/che436/index.php/Main/InfoSheet
- Write objective / course competency met
- Note examples of controllers around you
 - See YouTube video in <u>Lecture 1</u>
 - Try MATLAB / Simulink Exercise
- Dean's Lectures
 - 2 required to avoid ½ grade penalty (B+ to B)

